ВВЕДЕНИЕ 3
1 Обзор литературы 4
1.1 Механизмы и функции сна 4
1.2 Патологии сна 6
1.3 Электроэнцефалограмма в состоянии сна 8
1.3.1 Методика регистрации ЭЭГ 9
1.3.2 ЭЭГ активности, ритмы и другие компоненты 10
1.3.3 Особенности ЭЭГ на различных стадиях сна 12
1.3.4 Обработка ЭЭГ сигнала 13
1.4 Искусственная нейронная сеть 16
1.4.1 Обучение ИНС 17
2 Материалы и методы 19
2.1 База данных ЭЭГ расстройств сна 19
2.2 Определение характеристик и признаков патологий сна 20
2.3 Используемая нейронная сеть 20
2.3.1 Метод обучения 21
2.3.2 Контроль обучения 22
2.4 Алгоритм классификации расстройств 24
3 Результаты и обсуждение 26
3.1 Разработанный программный комплекс 26
3.2 Определение характеристик и признаков патологий сна 28
3.2.1 Определение характеристик 28
3.2.2 Определение признаков 33
3.2.3 Отбор признаков 35
3.3 Выбор оптимальной архитектуры нейросети 36
3.4 Результаты классификации расстройств сна 37
ЗАКЛЮЧЕНИЕ 40
СПИСОК СОКРАЩЕНИЙ 41
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 42
ПРИЛОЖЕНИЕ А Интерфейс разработанной программы для просмотра
*.EDF(+) файлов 5
Общее качество сна - это один из самых важных параметров, который можно использовать для субъективной оценки качества жизни и общего состояния здоровья. Существует большое количество расстройств сна [1], каждое из которых негативно влияет на гомеостаз организма. Различные нарушения сна касаются циркадных ритмов, дыхательных процессов, процессов метаболизма [2], эндокринной системы и других жизненно важных механизмов.
Открытие Гансом Бергером в 1928 году ЭЭГ привело к огромному скачку в понимании механизмов сна. Именно при помощи этого метода была впервые зафиксирована фаза быстрого движения глаз. С тех пор именно ЭЭГ является основным методом изучения и анализа состояния сна.
По своей природе ЭЭГ представляет собой совокупность электрической активности миллионов нейронов, которая складывается в непредсказуемый сигнал, визуально сложный для трактовки. Применяются статистический (стационарный и нестационарный), синтаксический методы анализа, элементы теории хаоса, генетические алгоритмы. Однако применение искусственных нейронных сетей (ИНС) считается одним из самых перспективных. [3]
Основная сила искусственных нейронных сетей (ИНС) в распараллеливании обработки информации и способности самообучаться, создавать обобщения и правила, выделять скрытые особенности и черты, недоступные для человеческого восприятия.
В настоящее время для ЭЭГ анализа сна ИНС используются в таких областях, как отслеживание пробуждений, оценка качества сна, определение стадий сна, детектирование сновидений.
Тем не менее, в литературе не было замечено случаев использования нейронных сетей для анализа ЭЭГ на предмет расстройств сна.
Целью данной работы является оценка эффективности искусственных нейронных сетей в определении расстройств сна по электроэнцефалограмме.
Задачи:
1. Подготовка базы данных для обучения и контроля нейронной сети;
2. Выбор архитектуры и разработка нейронной сети;
3. Определение и отбор признаков для обучения;
4. Обучение нейронной сети паттернам пяти болезней сна;
5. Анализ результатов работы нейронной сети.
В ходе работы были определены отличительные характеристики электроэнцефалограмм людей с расстройствами сна и признаки, по которым расстройства сна можно классифицировать искусственной нейронной сетью.
Самой эффективной архитектурой для нейронной сети с топологией многослойного перцептрона оказалась 6-4 (два слоя, 6 нейронов на первом, 4 на втором).
Достигнуты следующие показатели эффективности: точность 98% в определении расстройства поведения в быстром сне, 75% в определении инсомнического расстройства, 65% - расстройства периодического движения конечностями и 57% - нарколепсии (при малой обучающей выборке).
Использование указанного типа нейронной сети вместе с выбранными признаками не подходит для классификации ночной фронтальной лобной эпилепсии.
Разработанный в ходе исследовательской работы программный комплекс на данном этапе готов к использованию в дальнейших научных и диагностических целях и будет выложен в открытый доступ под лицензией свободного ПО.
1. Zucconi M., Ferri R. Assessment of sleep disorders and diagnostic procedures //Eur Sleep Res Soc. - 2014. - T. 23. - C. 95-110.
2. Hargens T. A. et al. Association between sleep disorders, obesity, and exercise: a review //Nature and science of sleep. - 2013. - T. 5. - C. 27.
3. Jansen B. H. Quantitative analysis of electroencephalograms: Is there chaos in the future? //International journal of bio-medical computing. - 1991. - T. 27. - №. 2. - C. 95-123.
4. Brown R. E. et al. Control of sleep and wakefulness //Physiological reviews. - 2012. - T. 92. - №. 3. - C. 1087-1187.
5. Sleep computing committee of the japanese society of sleep research society (JSSR): et al. Proposed supplements and amendments to ‘a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects', the Rechtschaffen & Kales (1968) standard //Psychiatry and clinical neurosciences. - 2001. - T. 55. - №. 3. - C. 305-310.
6. Duce B. et al. The AASM recommended and acceptable EEG montages are comparable for the staging of sleep and scoring of EEG arousals //Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine. - 2014. - T. 10. - №. 7. - C. 803.
7. Massimini M. et al. The sleep slow oscillation as a traveling wave //Journal of Neuroscience. - 2004. - T. 24. - №. 31. - C. 6862-6870.
8. Saper C. B., Scammell T. E., Lu J. Hypothalamic regulation of sleep and circadian rhythms //Nature. - 2005. - T. 437. - №. 7063. - C. 1257-1263.
9. Susmakova K. Human sleep and sleep EEG //Measurement Science Review. - 2004. - T. 4. - №. 2. - C. 59-74.
10. Rechtschaffen A., Siegel J. M. Sleep and dreaming //Principles of neuroscience. - 2000. - T. 4. - C. 936-947.
11. Cai Z. J. The functions of sleep: further analysis //Physiology & behavior. - 1991. - T. 50. - №. 1. - C. 53-60.
12. Halasz P. et al. The nature of arousal in sleep //Journal of sleep research. - 2004. - T. 13. - №. 1. - C. 1-23.
13. Sateia M. J. International classification of sleep disorders //Chest. - 2014. - T. 146. - №. 5. - C. 1387-1394.
14. Thorpy M. J. Classification of sleep disorders //Neurotherapeutics. - 2012. - T. 9. - №. 4. - C. 687-701.
15. Полуэктов M. Г., Марковина И. Ю. Перевод терминов третьей версии Международной классификации расстройств сна 2014 года с кодами МКБ-10 //Эффективная фармакотерапия. - 2015. - №. 53. - С. 72-75.
16. Wolkove N. et al. Sleep and aging: 1. Sleep disorders commonly found in older people //Canadian Medical Association Journal. - 2007. - T. 176. - №. 9. - C. 1299-1304.
17. NCCDPHP - National Center for Chronic Disease and Prevention and Health Promotion [Электронный ресурс] //Centers for Disease Control and Prevention. - Atlanta, 2018. - Режим доступа: https://www.cdc.gov/chronicdisease/
18. Ten Common Sleep Disorders [Электронный ресурс] // The Sleep Health
Foundation. - Blacktown, 2011. - Режим доступа:
http://sleephealthfoundation.org.au/pdfs/facts/Common Sleep Disorders.pdf
19. Chokroverty S. et al. (ed.). Sleep and movement disorders. - Oxford University Press, 2012.
20. Овчаров В. К., Максимова М. В. (ред.). Международная
статистическая классификация болезней и проблем, связанных со здоровьем: МКБ-10. - Медицина, 1995. - 697 c.
21. Vetrugno R., D'angelo R., Montagna P. Periodic limb movements in sleep and periodic limb movement disorder //Neurological Sciences. - 2007. - T. 28. - №. 1. - C. 9-14.
22. Kiehn O., Butt S. J. B. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord //Progress in neurobiology.- 2003. - T. 70. - №. 4. - C. 347-361.
23. Boeve B. F. REM sleep behavior disorder //Annals of the New York Academy of Sciences. - 2010. - T. 1184. - №. 1. - C. 15-54.
24. JASPER H. H. The ten-twenty electrode system of the Intenational Federation //Electroenceph clin Neutro physiol. - 1958. - T. 10. - C. 367-380.
25. Глоссарий ЭЭГ терминов Международной федерации клинической нейрофизиологии (IFCN) [Электронный ресурс]//Визуальная ЭЭГ. - Режим доступа: https://eeg-online.ru/glossary.htm
26. Сотников П. И. Обзор методов обработки сигнала электроэнцефалограммы в интерфейсах мозг-компьютер //Инженерный вестник. - 2014. - №. 10. - С. 18-18.
27. Кулаичев А. П. Критика вейвлет анализа ЭЭГ //Актуальные проблемы гуманитарных и естественных наук. - 2016. - Т. 1. - №. 12. - С. 47.
28. Lotte F. A tutorial on EEG signal-processing techniques for mental-state recognition in brain-computer interfaces //Guide to Brain-Computer Music Interfacing. - Springer London, 2014. - С. 133-161.
29. §en B. et al. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms //Journal of medical systems. - 2014. - T. 38. - №. 3. - C. 1-21.
30. Rodriguez-Sotelo J. L. et al. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques //Entropy. - 2014. - T. 16. - №. 12. - C. 6573-6589.
31. §en B. et al. i-EEG: A Software Tool for EEG Feature Extraction, Feature Selection and Classification. //GAU Journal of Soc. & App. Sciences. - 2014. - T. 6.- №. 10. - C. 43-60.
32. Кулаичев А. П. Компьютерная электрофизиология и функциональная диагностика. - Форум, 2007.
33. Dong H. et al. Mixed neural network approach for temporal sleep stage classification //IEEE Transactions on Neural Systems and Rehabilitation Engineering.- 2018. - T. 26. - №. 2. - С. 324-333.
34. Su B. L. et al. Detecting slow wave sleep using a single EEG signal channel //Journal of neuroscience methods. - 2015. - T. 243. - C. 47-52.
35. Goldberger A. L. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals //Circulation. - 2000.- T. 101. - №. 23. - C. e215-e220.
36. Kemp B. et al. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG //IEEE Transactions on Biomedical Engineering. - 2000. - T. 47. - №. 9. - C. 1185-1194.
37. Terzano M. G. et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep //Sleep medicine. - 2002. - T. 3. - №. 2. - C. 187-199.
38. Ichimaru Y., Moody G. B. Development of the polysomnographic database on CD-ROM //Psychiatry and clinical neurosciences. - 1999. - T. 53. - №. 2. - C. 175-177.
39. Quan S. F. et al. The sleep heart health study: design, rationale, and methods //Sleep. - 1997. - T. 20. - №. 12. - C. 1077-1085.
40. Heneghan C. St. Vincent's University Hospital/University College Dublin Sleep Apnea Database: doi:10.13026/C26C7D
41. Rezaei M., Mohammadi H., Khazaie H. EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects //Data in brief. - 2017. - T. 15. - C. 314-319.
42. Le T. Q., Bukkapatnam S. T. S. Nonlinear dynamics forecasting of obstructive sleep apnea onsets //PloS one. - 2016. - T. 11. - №. 11. - C. e0164406.
43. Baum E. B. On the capabilities of multilayer perceptrons //Journal of complexity. - 1988. - T. 4. - №. 3. - C. 193-215.
44. Cybenko G. Approximation by superpositions of a sigmoidal function //Mathematics of control, signals and systems. - 1989. - T. 2. - №. 4. - C. 303-314.
45. Lotte F. et al. A review of classification algorithms for EEG-based brain-computer interfaces //Journal of neural engineering. - 2007. - T. 4. - №. 2. - C. R1.
46. Orhan U., Hekim M., Ozer M. EEG signals classification using the K- means clustering and a multilayer perceptron neural network model //Expert Systems with Applications. - 2011. - T. 38. - №. 10. - C. 13475-13481.
47. Pigorini A. et al. Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert-Huang transform //Journal of neuroscience methods.-2011. - T. 198. - №. 2. - C. 236-245.
48. Huang N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis //Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. - The Royal Society, 1998. - T. 454. - №. 1971. - C. 903-995.
49. Zucconi M., Ferri R. Assessment of sleep disorders and diagnostic procedures //Eur Sleep Res Soc. - 2014. - T. 23. - C. 95-110.
50. Littner M. et al. Practice parameters for using polysomnography to evaluate insomnia: an update //Sleep. - 2003. - T. 26. - №. 6. - C. 754-760.
51. Perlis M. L. et al. Temporal and stagewise distribution of high frequency EEG activity in patients with primary and secondary insomnia and in good sleeper controls //Journal of sleep research. - 2001. - T. 10. - №. 2. - C. 93-104.
52. Perlis M. L. et al. Beta/Gamma EEG activity in patients with primary and secondary insomnia and good sleeper controls //Sleep. - 2001. - T. 24. - №. 1. - C. 110-117.
53. Perlis M. L. et al. Beta EEG activity and insomnia //Sleep medicine reviews. - 2001. - T. 5. - №. 5. - C. 365-376.
54. Parrino L. et al. Is insomnia a neurophysiological disorder? The role of sleep EEG microstructure //Brain research bulletin. - 2004. - T. 63. - №. 5. - C. 377¬383.
55. Maes J. et al. Sleep misperception, EEG characteristics and autonomic nervous system activity in primary insomnia: a retrospective study on polysomnographic data //International Journal of Psychophysiology. - 2014. - T. 91.- №. 3. - C. 163-171.
56. Spiegelhalder K. et al. Increased EEG sigma and beta power during NREM sleep in primary insomnia //Biological psychology. - 2012. - T. 91. - №. 3. - C. 329¬333.
57. Merica H., Blois R., Gaillard J. M. Spectral characteristics of sleep EEG in chronic insomnia //European Journal of Neuroscience. - 1998. - T. 10. - №. 5. - C. 1826-1834.
58. Mai E., Buysse D. J. Insomnia: prevalence, impact, pathogenesis, differential diagnosis, and evaluation //Sleep medicine clinics. - 2008. - T. 3. - №. 2.
- C. 167-174.
59. Merica H., Gaillard J. M. The EEG of the sleep onset period in insomnia: a discriminant analysis //Physiology & behavior. - 1992. - T. 52. - №. 2. - C. 199-204.
60. Marzano C. et al. Quantitative electroencephalogram (EEG) in insomnia: a new window on pathophysiological mechanisms //Current pharmaceutical design. - 2008. - T. 14. - №. 32. - C. 3446-3455.
61. Terzano M. G. et al. CAP variables and arousals as sleep electroencephalogram markers for primary insomnia //Clinical Neurophysiology. - 2003. - T. 114. - №. 9. - C. 1715-1723.
62. Bourdet C., Goldenberg F. Insomnia in anxiety: sleep EEG changes //Journal of psychosomatic research. - 1994. - T. 38. - C. 93-104.
63. Merica H., Blois R., Gaillard J. M. Spectral characteristics of sleep EEG in chronic insomnia //European Journal of Neuroscience. - 1998. - T. 10. - №. 5. - C. 1826-1834.
64. Richardson G. S. et al. Excessive daytime sleepiness in man: multiple sleep latency measurement in narcoleptic and control subjects //Electroencephalography and clinical neurophysiology. - 1978. - T. 45. - №. 5. - C. 621-627.
65. Mosko S. S., Shampain D. S., Sassin J. F. Nocturnal REM latency and sleep disturbance in narcolepsy //Sleep. - 1984. - T. 7. - №. 2. - C. 115-125.
66. Roth T. et al. Disrupted nighttime sleep in narcolepsy //Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine. - 2013. - T. 9. - №. 9. - С. 955.
67. Tafti M. et al. Sleep deprivation in narcoleptic subjects: effect on sleep stages and EEG power density //Electroencephalography and clinical neurophysiology. - 1992. - Т. 83. - №. 6. - С. 339-349.
68. Plazzi G., Serra L., Ferri R. Nocturnal aspects of narcolepsy with cataplexy //Sleep medicine reviews. - 2008. - T. 12. - №. 2. - С. 109-128.
69. Mukai J. et al. Spectral analysis of all-night human sleep EEG in narcoleptic patients and normal subjects //Journal of sleep research. - 2003. - T. 12. - №. 1. - C. 63-71.
70. Schenck C. H., Mahowald M. W. Motor dyscontrol in narcolepsy: Rapid-eye-movement (REM) sleep without atonia and REM sleep behavior disorder //Annals of neurology. - 1992. - T. 32. - №. 1. - C. 3-10.
71. Khatami R. et al. Insufficient non-REM sleep intensity in narcolepsy¬cataplexy //Sleep. - 2007. - T. 30. - №. 8. - C. 980-989.
72. Plazzi G., Serra L., Ferri R. Nocturnal aspects of narcolepsy with cataplexy //Sleep medicine reviews. - 2008. - T. 12. - №. 2. - C. 109-128.
73. Terzano M. G. et al. Cyclic alternating pattern (CAP) alterations in narcolepsy //Sleep medicine. - 2006. - T. 7. - №. 8. - C. 619-626. MLA
74. Guilleminault C. et al. Investigations into the neurologic basis of narcolepsy //Neurology. - 1998. - T. 50. - №. 2 Suppl 1. - C. S8-S15.
75. Ferrillo F. et al. A model-based approach to homeostatic and ultradian aspects of nocturnal sleep structure in narcolepsy //Sleep. - 2007. - T. 30. - №. 2. - C. 157-165.
76. Nobili L. et al. Dynamics of slow wave activity in narcoleptic patients under bed rest conditions //Electroencephalography and clinical Neurophysiology. - 1995. - T. 95. - №. 6. - C. 414-425.
77. Rechtschaffen A. et al. Nocturnal sleep of narcoleptics //Electroencephalography and clinical neurophysiology. - 1963. - T. 15. - №. 4. - C. 599-609.
78. Saletu M. T. et al. EEG-mapping differences between narcolepsy patients and controls and subsequent double-blind, placebo-controlled studies with modafinil //European archives of psychiatry and clinical neuroscience. - 2005. - T. 255. - №. 1. - C. 20-32.
79. Liu D., Pang Z., Lloyd S. R. A neural network method for detection of obstructive sleep apnea and narcolepsy based on pupil size and EEG //IEEE Transactions on Neural Networks. - 2008. - T. 19. - №. 2. - C. 308-318.
80. Berry R. B. et al. The AASM manual for the scoring of sleep and associated events //Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine. - 2012.
81. Nobili L. et al. Relationship of epileptic discharges to arousal instability and periodic leg movements in a case of nocturnal frontal lobe epilepsy: a stereo¬EEG study //Sleep. - 2006. - T. 29. - №. 5. - C. 701-704.
82. Sforza E. et al. EEG and cardiac activation during periodic leg movements in sleep Support for a hierarchy of arousal responses //Neurology. - 1999. - T. 52. - №. 4. - C. 786-786.
83. Guggisberg A. G., Hess C. W., Mathis J. The significance of the sympathetic nervous system in the pathophysiology of periodic leg movements in sleep //Sleep. - 2007. - T. 30. - №. 6. - C. 755-766.
84. Ferri R. et al. Heart rate and spectral EEG changes accompanying periodic and non-periodic leg movements during sleep //Clinical neurophysiology. - 2007. - T. 118. - №. 2. - C. 438-448.
85. Ferrillo F. et al. Changes in cerebral and autonomic activity heralding periodic limb movements in sleep //Sleep medicine. - 2004. - T. 5. - №. 4. - C. 407¬412.
86. Lavoie S. et al. Influence of sleep stage and wakefulness on spectral EEG activity and heart rate variations around periodic leg movements //Clinical Neurophysiology. - 2004. - T. 115. - №. 10. - C. 2236-2246.
87. Karadeniz D. et al. EEG arousals and awakenings in relation with periodic leg movements during sleep //Journal of sleep research. - 2000. - T. 9. - №. 3. - C. 273-278.
88. Mendelson W. B. Are periodic leg movements associated with clinical sleep disturbance? //Sleep. - 1996. - T. 19. - №. 3. - C. 219-223.
89. Saletu B. et al. EEG mapping, psychometric, and polysomnographic studies in restless legs syndrome (RLS) and periodic limb movement disorder (PLMD) patients as compared with normal controls //Sleep medicine. - 2002. - T. 3. - C. 35¬42.
90. Parrino L. et al. The cyclic alternating pattern plays a gate-control on periodic limb movements during non-rapid eye movement sleep //Journal of clinical neurophysiology. - 1996. - T. 13. - №. 4. - C. 314-323.
91. Petit D. et al. Sleep and quantitative EEG in neurodegenerative disorders //Journal of psychosomatic research. - 2004. - T. 56. - №. 5. - C. 487-496.
92. Livia Fantini M. et al. Slowing of electroencephalogram in rapid eye movement sleep behavior disorder //Annals of neurology. - 2003. - T. 53. - №. 6. - C. 774-780.
93. Boeve B. F. REM sleep behavior disorder //Annals of the New York Academy of Sciences. - 2010. - T. 1184. - №. 1. - C. 15-54.
94. Iranzo A. et al. Electroencephalographic slowing heralds mild cognitive impairment in idiopathic REM sleep behavior disorder //Sleep medicine. - 2010. - T. 11. - №. 6. - C. 534-539.
95. Gagnon J. F. et al. Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases //The Lancet Neurology. - 2006. - T. 5. - №. 5. - C. 424¬432.
96. Schenck C. H. et al. Chronic behavioral disorders of human REM sleep: a new category of parasomnia //Sleep. - 1986. - T. 9. - №. 2. - C. 293-308.
97. Ferri R. et al. Searching for a marker of REM sleep behavior disorder: submentalis muscle EMG amplitude analysis during sleep in patients with narcolepsy/cataplexy //Sleep. - 2008. - T. 31. - №. 10. - C. 1409-1417.
98. Massicotte-Marquez J. et al. Slow-wave sleep and delta power in rapid eye movement sleep behavior disorder //Annals of neurology. - 2005. - T. 57. - №. 2. - C. 277-282.
99. Ferri R. et al. Different EEG frequency band synchronization during nocturnal frontal lobe seizures //Clinical neurophysiology. - 2004. - T. 115. - №. 5. - C. 1202-1211.
100. Oldani A. et al. Autosomal dominant nocturnal frontal lobe epilepsy. A video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome //Brain: a journal of neurology. - 1998. - T. 121. - №. 2. - C. 205-223.
101. Provini F. et al. Nocturnal frontal lobe epilepsy: a clinical and polygraphic overview of 100 consecutive cases //Brain. - 1999. - T. 122. - №. 6. - C. 1017-1031.
102. Nobili L. Nocturnal frontal lobe epilepsy and non-rapid eye movement sleep parasomnias: differences and similarities //Sleep medicine reviews. - 2007. - T. 11. - №. 4. - C. 251-254.
103. Zucconi M. Nocturnal Frontal Lobe Epilepsy-An Update on Differential Diagnosis with Non-rapid Eye Movement Parasomnia //European neurological Disease. - 2007. - №. 2. - C. 62-64.
104. Oldani A. et al. Nocturnal frontal lobe epilepsy misdiagnosed as sleep apnea syndrome //Acta neurologica scandinavica. - 1998. - T. 98. - №. 1. - C. 67-71.
105. Zucconi M. et al. The macrostructure and microstructure of sleep in patients with autosomal dominant nocturnal frontal lobe epilepsy //Journal of Clinical Neurophysiology. - 2000. - T. 17. - №. 1. - C. 77-86.
106. Overvliet G. M. et al. Nocturnal epileptiform EEG discharges, nocturnal epileptic seizures, and language impairments in children: review of the literature //Epilepsy & Behavior. - 2010. - T. 19. - №. 4. - C. 550-558.
107. Zucconi M., Ferini-Strambi L. NREM parasomnias: arousal disorders and differentiation from nocturnal frontal lobe epilepsy //Clinical Neurophysiology. - 2000. - T. 111. - C. S129-S135.
108. Nobili L. Nocturnal frontal lobe epilepsy and non-rapid eye movement sleep parasomnias: differences and similarities //Sleep medicine reviews. - 2007. - T. 11. - №. 4. - C. 251-254.
109. Bazil C. W., Castro L. H. M., Walczak T. S. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy //Archives of neurology. - 2000. - T. 57. - №. 3. - C. 363-368.
110. El Helou J. et al. K-complex-induced seizures in autosomal dominant nocturnal frontal lobe epilepsy //Clinical Neurophysiology. - 2008. - T. 119. - №. 10. - C. 2201-2204.
111. Ito M. et al. Electroclinical picture of autosomal dominant nocturnal frontal lobe epilepsy in a Japanese family //Epilepsia. - 2000. - T. 41. - №. 1. - C. 52-58.
112. DelRosso L. M., Chesson Jr A. L., Hoque R. Characterization of REM sleep without atonia in patients with narcolepsy and idiopathic hypersomnia using AASM scoring manual criteria //Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine. - 2013. - T. 9. - №. 7. - C. 675.
113. Hening W. A., Walters A. S. (ed.). Sleep and Movement Disorders. - Butterworth-Heinemann Medical, 2003.
114. Richard M., Pollak C. P., Weitzman E. D. Periodic movements in sleep (nocturnal myoclonus): relation to sleep disorders //Annals of neurology. - 1980. - T. 8. - №. 4. - C. 416-421.
115. Fantini M. L. et al. Periodic leg movements in REM sleep behavior disorder and related autonomic and EEG activation //Neurology. - 2002. - T. 59. - №. 12. - C. 1889-1894.
116. Kaiser J. F. Some useful properties of Teager's energy operators //Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on. - IEEE, 1993. - T. 3. - C. 149-152.
117. Ahmed B., Redissi A., Tafreshi R. An automatic sleep spindle detector based on wavelets and the teager energy operator //Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. - IEEE, 2009. - C. 2596-2599.
118. GEERING B. A. et al. Period-amplitude analysis and power spectral analysis: a comparison based on all-night sleep EEG recordings //Journal of sleep research. - 1993. - T. 2. - №. 3. - C. 121-129.
119. Uchida S. et al. A comparison of period amplitude analysis and FFT power spectral analysis of all-night human sleep EEG //Physiology & behavior. - 1999. - T. 67. - №. 1. - C. 121-131.
120. Hjorth B. EEG analysis based on time domain properties //Electroencephalography and clinical neurophysiology. - 1970. - T. 29. - №. 3. - C. 306-310.
121. Van Hese P. et al. Automatic detection of sleep stages using the EEG //Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. - IEEE, 2001. - T. 2. - C. 1944-1947.
122. Estrada E. et al. EEG feature extraction for classification of sleep stages //Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. - IEEE, 2004. - T. 1. - C. 196-199.
123. Tang W. C. et al. Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring //REM. - 2007. - T. 365. - C. 8-6.
124. Fell J. et al. Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures //Electroencephalography and clinical Neurophysiology. - 1996. - T. 98. - №. 5. - C. 401-410.
125. Inouye T. et al. Quantification of EEG irregularity by use of the entropy of the power spectrum //Electroencephalography and clinical neurophysiology. - 1991. - T. 79. - №. 3. - С. 204-210.
126. Lofhede J. et al. Automatic classification of background EEG activity in healthy and sick neonates //Journal of neural engineering. - 2010. - T. 7. - №. 1. - C. 016007.
127. Zoubek L. et al. Feature selection for sleep/wake stages classification using data driven methods //Biomedical Signal Processing and Control. - 2007. - T. 2. - №. 3. - C. 171-179.
128. Huupponen E. et al. Development and comparison of four sleep spindle detection methods //Artificial intelligence in medicine. - 2007. - T. 40. - №. 3. - C. 157-170.
129. Cvetkovic D., Cosic I. Sleep onset estimator: evaluation of parameters //Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. - IEEE, 2008. - C. 3860-3863.
130. Huupponen E. et al. Automatic analysis of electro-encephalogram sleep spindle frequency throughout the night //Medical and Biological Engineering and Computing. - 2003. - T. 41. - №. 6. - C. 727-732.
131. Huupponen E. et al. Comparison of fuzzy reasoning and autoassociative MLP in sleep spindle detection //Signal Processing Conference, 2000 10th European.- IEEE, 2000. - C. 1-4.
132. Agarwal R., Gotman J. Computer-assisted sleep staging //IEEE Transactions on Biomedical Engineering. - 2001. - T. 48. - №. 12. - C. 1412-1423.
133. Estrada E. et al. EEG feature extraction for classification of sleep stages //Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. - IEEE, 2004. - T. 1. - C. 196-199.
134. Zoubek L. et al. Feature selection for sleep/wake stages classification using data driven methods //Biomedical Signal Processing and Control. - 2007. - T. 2. - №. 3. - C. 171-179.
135. Alvarez-Estevez D., Moret-Bonillo V. Model comparison for the detection of EEG arousals in sleep apnea patients //International Work-Conference on Artificial Neural Networks. - Springer, Berlin, Heidelberg, 2009. - C. 997-1004.
136. Zhovna I., Shallom I. D. Automatic detection and classification of sleep stages by multichannel EEG signal modeling //Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. - IEEE, 2008. - C. 2665-2668.
137. Acir N., Guzeli§ C. Automatic recognition of sleep spindles in EEG by using artificial neural networks //Expert Systems with Applications. - 2004. - T. 27.- №. 3. - C. 451-458.
138. Nobili L. et al. Nocturnal frontal lobe epilepsy //Current neurology and neuroscience reports. - 2014. - T. 14. - №. 2. - C. 424.
139. Combi R. et al. Autosomal dominant nocturnal frontal lobe epilepsy //Journal of neurology. - 2004. - T. 251. - №. 8. - C. 923-934.