Целью исследования является построение дискретного аналога обобщенного дифференциального уравнения, описывающего конвекцию в вязкой несжимаемой жидкости в сферических координатах. Математическая модель конвективного тепломассопереноса в вязкой несжимаемой жидкости задается системой дифференциальных уравнений, полученных на основе уравнений гидродинамики, тепло- и массообмена. Эти уравнения подчиняются обобщенному закону сохранения, который описывается дифференциальным уравнением для обобщенной переменной. Для дискретизации дифференциального уравнения используется метод контрольного объема. Расчетная область разбивается на множество непересекающихся контрольных объемов с узловой точкой в каждом из них. Дифференциальное уравнение интегрируется по контрольным объемам. В результате получается дискретный аналог, связывающий значение обобщенной переменной в узловой точке с ее значениями в соседних узлах. Метод гарантирует строгое выполнение законов сохранения как во всей расчетной области, так и в любой ее части. Чтобы применять лучшие аппроксимации профилей обобщенной переменной, находятся точные решения уравнений сохранения отдельно по каждой координате. Кратко поясняется физический смысл точных решений. В итоге строится дискретный аналог для обобщенного дифференциального уравнения с использованием полученных аналитических решений.
В работе [3] была решена задача построения дискретного аналога для уравнения конвекции и диффузии в цилиндрических координатах на основе метода контрольного объема. С учетом того, что многие прикладные задачи требуют для численного решения использования криволинейных сеток, представляется целесообразным получение расчетных формул для коэффициентов дискретного аналога обобщенного дифференциального уравнения с использованием аппроксимации профилей функций между узлами сетки в сферических координатах, как это было сделано ранее для цилиндрической системы координат.
Полученный дискретный аналог для обобщенного дифференциального уравнения может быть использован для численного моделирования конвективного тепломассопереноса в условиях ламинарных и турбулентных течений вязкой несжимаемой жидкости на криволинейных сетках в случае использования сферических координат. Расчетные формулы получены на основе точных решений уравнений переноса, поэтому при их использовании для расчетов повышается точность результатов, что является важным аргументом в пользу рассмотренного метода дискретизации при численном моделировании на основе уравнений Навье-Стокса.