Тема: АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД БУРОВОЙ УСТАНОВКИ
Закажите новую по вашим требованиям
Представленный материал является образцом учебного исследования, примером структуры и содержания учебного исследования по заявленной теме. Размещён исключительно в информационных и ознакомительных целях.
Workspay.ru оказывает информационные услуги по сбору, обработке и структурированию материалов в соответствии с требованиями заказчика.
Размещение материала не означает публикацию произведения впервые и не предполагает передачу исключительных авторских прав третьим лицам.
Материал не предназначен для дословной сдачи в образовательные организации и требует самостоятельной переработки с соблюдением законодательства Российской Федерации об авторском праве и принципов академической добросовестности.
Авторские права на исходные материалы принадлежат их законным правообладателям. В случае возникновения вопросов, связанных с размещённым материалом, просим направить обращение через форму обратной связи.
📋 Содержание
1 Общая часть 5
1.1 Механические буровые установки глубокого бурения 5
1.2 Буровые вышки и оборудование для спуска буровых колонн 7
1.2.1 Талевая система буровой лебедки 9
1 .З Выбор типа электропривода и схемы управления им 14
2 Обзор и анализ систем электропривода и структур управления электроприводами 17
3 Расчетная часть 22
3.1 Составление расчетной схемы электропривода и приведение параметров 22
3.2 Выполнение упрощений 25
3.3 Выбор двигателя и построение уточненной нагрузочной диаграммы 27
3.4 Составление уравнений движения системы определение передаточных
функций механической части и построение ЛАЧХ и ЛФЧХ 31
3.5 Представление двигателя в виде обобщенной машины 41
3.6 Расчет переходных процессов обобщенной машины при пуске 49
3.7 Выбор силового преобразователя и построение механических характеристик в
разомкнутой системе, оценка диапазона регулирование скорости 57
3.8 Выбор силового преобразователя 61
3.9 Выбор трансформатора и сглаживающего реактора 62
3.10 Механические характеристики в разомкнутой системе 63
3.11 Расчет переходных процессов в разомкнутой системе, оценка динамических показателей электропривода и возможностей демпфирования упругих колебаний 71
3.12 Расчет энергетических показателей 83
4 Разработка принципиальной схемы управления электроприводом 89
5 Экспериментальная часть 90
5.1 Анализ кинетического привода 90
5.2 Структурная схема системы адаптивно-векторного управления
электроприводом 92
5.3 Наблюдатель состояния 93
6 Безопасность проекта 97
6.1 Анализ факторов производственной среды
Вредные и опасные факторы
6.2 Пожарная безопасность..
6.3 Электробезопасность
7 Экономическая часть
7.1 Экономическая характеристика месторождения 109
7.2 Анализ мероприятий по снижению себестоимости 1 тонны добычи нефти
путем проведения закупочных процедур 111
Заключение 118
Список использованных источников 119
📖 Введение
Конец XX столетия характеризуется резким увеличением спроса на нефть и газ и их потребления. В настоящее время около 70 % энергетической потребности в мире покрывается за счет нефти и газа.
В последнее время добыча нефти с помощью фонтанирующих скважин фактически прекратилась. Многие скважины, пробуренные на нефтеносные пласты, сразу после окончания бурения вводятся в эксплуатацию насосным способом. Непрерывно растет фонд малодебитных скважин (до 3т/сутки)
Мощность насосного оборудования на них в 4-5 раз превышает необходимую. В настоящее время в стоимости нефти эксплуатационные расходы на электроэнергию и обслуживание энергетического комплекса доходят до 45-50%. Процесс добычи нефти после геологических работ и бурения скважин начинается с выбора оборудования. Средний срок эксплуатации нефтяных скважин около 20 лет. За это время оборудование меняется несколько раз. Это объясняется не столько его физическим износом, сколько изменением дебита нефти. Когда дебит скважины становится менее 100 т/сут, устанавливается штанговая глубинно¬насосная установка (ШГНУ) - станок-качалка. Есть скважины, на которых сразу после бурения устанавливаются станки-качалки. 75% скважин в России оборудованы ими. Если производительность насоса станка-качалки превышает нефтеотдачу скважины, то в настоящее время или меняют станок-качалку, или переводят ее в периодический режим работы. Причем кажущаяся экономия электроэнергии и моточасов работы оборудования при периодической эксплуатации скважин на самом деле приводит к увеличению удельного расхода электроэнергии на тонну добытой нефти и к усложнению условий эксплуатации оборудования [1].
Поэтому требования правильного выбора электрооборудования для нефтедобычи, автоматизация его работы, снижение затрат на эксплуатацию и ремонт оборудования являются весьма актуальными.
Интенсификация технологических процессов добычи, переработки и хранения нефти и нефтепродуктов вызывает необходимость дальнейшего совершенствования систем автоматизации нефтяных отраслей промышленности, что, в свою очередь, связано с обработкой большого объема измерительной информации. Этим объясняется широкое развитие измерительных информационных систем, предназначенных для сбора, преобразования, передачи, хранения, обработки на ЭВМ и представления в удобном для оператора виде различного рода технологической информации.
✅ Заключение
Следующим этапом в работе была проведена проверка расчетного двигателя по условию нагрева и перегрузочную способность.
Далее были построены функциональная и структурная схемы, с помощью которых были рассчитаны параметры для построения математической модели в среде MatLab.
Исследование, проведенное в проекте полученной виртуальной модели, позволило изучить динамические и статические характеристики системы управления электропривода постоянного тока по системе ПЧ-АД под нагрузкой и при холостом ходе.



