Тип работы:
Предмет:
Язык работы:


Исследование спектров токов ротора и статора асинхронного электродвигателя при бездатчиковом векторном управлении.

Работа №195290

Тип работы

Дипломные работы, ВКР

Предмет

Электроснабжение и элктротехника

Объем работы75
Год сдачи2018
Стоимость4750 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
17
Не подходит работа?

Узнай цену на написание


АННОТАЦИЯ 2
ВВЕДЕНИЕ 6
АКТУАЛЬНОСТЬ 8
1. СИСТЕМЫ УПРАВЛЕНИЯ 10
1.1 Скалярное управление 10
1.2 Векторное управление 12
1.3 Векторное бездатчиковое управление 16
2. НАЗНАЧЕНИЕ СТЕНДА 21
3. СОСТАВ СТЕНДА 22
4. ОПИСАНИЕ АЛГОРИТМОВ УПРАВЛЕНИЯ 39
5. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ 49
ЗАКЛЮЧЕНИЕ 65
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Электропривод, использующий высокий коэффициент полезного действия в преобразовании электрической энергии в механическую, основанный на современных достижениях преобразовательной техники и IT- технологиях микропроцессорных информационных систем управления часто поражает воображение скорость развития. Можно сказать, что современный электропривод, все более и более основывающийся на электродвигателях переменного тока, обладающих безспорными эксплуатационными преимуществами, и применяемый во всех сферах от промышленного производства до бытовых устройств, является основой технического прогресса. Все крупные электротехнические компании выпускают регулируемые электроприводы комплектно с компьютерными средствами автоматизации в виде гибко программируемых систем, предназначенных для широкого использования. Начало истории электропривода начинается с первой половины XIX века. Открытие Г.Х. Эрстедом (1777-1851) закона механического взаимодействия электромагнитного поля и проводника с током (1819 г.), а также М. Фарадеем (1791-1867) закона электромагнитной индукции (1831 г.) послужило серьезным толчком к развитию прикладной электротехники. Огромное значение для всего дальнейшего развития электропривода имело создание М.О. Доливо - Добровольским (1862 - 1919) трехфазной системы передачи переменного тока, трансформатора и асинхронного двигателя (1888 - 1889).
Несмотря на то что АД, изобрели достаточно давно, оно редко применялся в связи с трудностями реализации, особенностями управления. До недавнего времени чаще всего применялся асинхронный электропривод.Основной областью применения АД до недавнего времени являлся нерегулируемый электропривод. В последние годы в связи с разработкой и выпуском электротехнической промышленностью преобразователей частоты и напряжения стали создаваться регулируемыепостоянного тока.
Современный асинхронный электропривод представляет собой электротехническое устройство, включающее в себя новейшие разработки в теории и практике создания микропроцессоров, силовых полупроводниковых приборов, защиты от различных помех, программных наработок в области управления и интерфейсов, а также создания надежных и высокоэффективных электродвигателей. Для динамичного управления асинхронного электродвигателя наиболее распространен способ ориентированного по потокосцеплению ротора векторного управления (Блашке, 1971). Применение данного способа впервые позволило полноценно использовать управление скоростью и моментом асинхронными электродвигателями и получило первую реализацию в системе «Трансвектор» фирмы Siemens. Преимуществом данного метода является возможность раздельного управления потоком и моментом асинхронного электродвигателя в координатных осях Парка - Горева, связанных с потокосцеплением ротора, существенно приближая принципы регулирования к электроприводу постоянного тока. Несмотря на то что, векторное управление решило некоторые задачи, при этом имеет некоторые недостатки, для выявления причин возникновения которых требуется научные исследования.



Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Анализ разгона привода на холостом ходу на частоте соответствующих 30 Гц - 94 рад/с показывает, что векторное разомкнутое управление и векторное замкнутое по скорости практически идентичны, имеют одинаковое время переходного процесса 0,6 сек., одинаковую частоту установившегося ротора тока 2,25 Гц. Похожие спектры в диапазоне от 6 до 15 Гц (у системы с датчиком скорости максимальное значение в этой области приходится на 9,5 Гц, а в системе без датчика управления на 13-14 Гц). Пусковые токи в системе без датчика векторного управления на 30 % больше. При этом в системе с датчиком скорости, скорость вращения строго равна заданию. При скалярном управлении частота установившегося роторного тока 1,75 Гц, время разгона 0,4 сек., спектр не содержит увеличение от 9 до 15 Гц. От сюда следует, что при разгонах, скалярное управление эффективнее векторных, применяемых преобразователях ATV 71.
Анализ работы под нагрузкой.
Исследовался режим работы при набросе нагрузки на частоте вращения соответственно 30 Гц. Условие эксперимента, начальная скорость 0,5 А, конечная скорость установившегося режима 1,5 А. Время переходного процесса 0,6 сек. Анализ спектральных составляющих векторное без датчика управления максимальная составляющая тока ротора имеет частоту 6,25 Гц, напряжение 1,53 В, а система с датчиком имеет частоту установившегося роторного тока 8,75 Гц., напряжение 1,9 В. Скалярное управление имеет максимальное значение при частоте 4,75 Гц.и соответственно напряжение 821мВ. В диапазоне от 2 - х до 4 - х Гц все системы имеют многопиковые спектры, несколько меньше при скалярном управлении.
Частота роторного тока в установившимся режиме очень наглядно свидетельствует об эффективности алгоритма. Большая частота роторного тока соответствует большему скольжению. Наибольшая частота роторного
тока в нашем случае у векторного управления с датчиком скорости 8,75 Гц.против 6,25 без датчика управления и 4,75 у скалярного управления.
Комплекс проведенных исследований показывает, что реализация векторных уравнений при настройках параметра привода соответствующих инструкций может быть неэффективна и требует более детальной настройки отдельных параметров.



1. Усольцев, А.А. Частотное управление асинхронными двигателями. Учебное пособие/ А.А. Усольцев - СПб: СПбГУ ИТМО, 2006, - 94 с.
2. Зайцев, Г.Ф. Теория автоматического управления и регулирования:
учебное пособие для студентов вузов/ Г.Ф. Зайцев. - 2-е изд. перераб. и доп. - Киев: Выща школа, 1988. - 431 с.
3. Иващенко, Н.Н. Автоматическое регулирование. Теория и элементы
системы: учебник для вузов/ Н.Н. Иващенко. -4-е изд. перераб. и доп. - М.:
Машиностроение, 1978. - 736 с
4. Волович, Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств/ Г.И. Волович. - 3-е изд. - М.: Додэка-XXI, 2011. - 235с.
4. SchneiderElectric ATV71HU30M3 Технические характеристики продукта - 5 с.
5. SchneiderElectric ATV32HU15M2 Технический паспорт продукта - 4 с.
6. SchneiderElectricAltivar 71 Краткое руководство пользователя - 28 с.
7. SchneiderElectricAltivar 32 Руководство по программированию - 319 с.
8. SchneiderElectricAltivar 32 Руководство по установке - 51 с.
9. SchneiderElectricAltivar 71 Руководство по установке - 49 с.
10. SchneiderElectricAltivar 71 Руководство по программированию - 286 с.
11. Казачковский Н.Н. Программирование преобразователя частоты
Altivar 71/ Казачковский Н.Н. - Методические материалы: Днепропетровск, 2007



Работу высылаем на протяжении 30 минут после оплаты.




©2025 Cервис помощи студентам в выполнении работ