ВВЕДЕНИЕ 3
Глава 1 Теоретические основы проектирования и строительства крупнопролётных зданий и сооружений 5
1.1 Проектирования промышленных и общественных зданий 5
1.2 Классификация общественных зданий 7
1.3 Классификация промышленных зданий 14
1.4 Параметры промышленных крупнопролётных залов с установкой мостового крана 21
1.5 Проектирование деформационных швов в крупнопролётных зданиях 23
Глава 2 Система мониторинга крупнопролётных сооружений и предупреждение их обрушения 27
2.1 Мониторинг безопасности при обслуживании крупнопролётных конструкций 27
2.2 Обрушение зданий как чрезвычайная ситуация 38
2.3 Оценка и прогнозирование риска обрушения зданий и сооружений 39
2.4 Экспертиза безопасности при оценке риска обрушения 43
2.5 Управление риском обрушения зданий на стадии проекта 48
2.6 Системный подход к моделированию обрушения зданий 51
Глава 3 Характеристика объекта исследования 59
3.1 Индустриализация Красноярского края 59
3.2 Природно-климатические условия 70
Глава 4 Расчёт оптимального расположения датчиков деформации и идентификация напряжённых конструктивных участков крупнопролётного строения 73
4.2 Расчёт нагрузки от собственного веса конструкции 78
Глава 5 Расчёт рисков обрушения 83
5.1 Риски и оценка обрушения промышленных зданий и сооружений 83
5.2 Риски обрушения конструкции 85
5.3 Сравнительный анализ расчёта части кровельной конструкции ТРЦ «Июнь» с
холодным складом металла 89
ЗАКЛЮЧЕНИЕ 94
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 95
Технические и эксплуатационные параметры зданий и сооружений с течением времени имеют свойство меняться, терять некоторые свои характеристики под влиянием различных внешних воздействий. Это связано с изменчивостью величин нагрузок и изменением эксплуатационных свойств вследствие различных повреждений.
При достижении конструкции определённого уровня надёжности в них будут наблюдаться необратимые повреждения, такие как: трещины, деформации, потеря устойчивости, коррозии. Повреждения критического характера в конструкциях могут привести к обрушению конструкций и аварии здания или сооружения.
Своевременная оценка технического состояния и надежности зданий и сооружений позволяет вовремя провести их ремонт и усиление и тем самым обеспечить их надежность при эксплуатации.
Обрушение зданий и инженерных сооружений наносят значительный экономический ущерб и нередко сопровождаются гибелью людей. Одной из главных задач при строительстве и эксплуатации зданий и инженерных сооружений является обеспечение надежности гарантирующей их безаварийности. Одним из основных свойств определяющих надежность строительных конструкций зданий и инженерных сооружений, является безотказность их работы, способность сохранять заданные функции в течение определенного срока службы.
Долговечность сооружения оценивается продолжительностью его работоспособного состояния при установленной системе ремонта. Долговечность определяется сроками службы основных конструкций.
Надежность сооружения закладывается при разработке проекта и поддерживается на заданном уровне при эксплуатации за счет ремонта. При проектировании закладывается надежность конструкций исходя из требований норм на проектирование (нормативная надежность), которая косвенно отображает необходимый запас прочности конструкций на восприятие действующих нагрузок.
Мерой надежности сооружения служит его вероятность разрушения (частота вероятного разрушения сооружения в год). На практике надежность сооружения косвенно может быть оценена в виде коэффициента запаса прочности сооружения, категорией его технического состояния или условной надежностью в баллах.
Согласно постановлению правительства РФ от 28.12.2005 г. №1058-1111 обеспечить многофункциональные высотные, комплексные и крупнопроолётные здания-сооружения системами автоматизированного контроля. Система мониторинга особенно напряженных участков позволяет получать текущую информацию о конструктиве здания в режиме «реального времени», производить анализ динамики изменения уровня снега на крыше и деформаций в зависимости от снеговой нагрузки, ветровой нагрузки и сейсмической активности.
Обеспечение системами контроля целостности конструктива зданий становится всё более актуальным, в силу современных темпов строительства и реконструкции новых зданий и сооружений. Использование датчиков деформации в г. Красноярске на крупнопролётных объектах по своей специфики уникально и востребовано, поскольку строительные компании только начинают набирать обороты по их использованию.
1. Анализ рисков аварий зданий и сооружений показывает, что в подавляющем большинстве случаев обрушения являются результатом пересечения двух негативных событий: внешнего непроектного воздействия на объект и человеческого фактора.
В диссертации рассчитана модель управления рисками для крупнопролётных сооружений.
С помощью численного моделирования и расчёта рисков возникновения аварийной ситуации получено допустимое значение прогиба несущих балок без нарушения технологии строительства.
2. Проведённые расчёты показывают граничные условия прогиба несущих балок и, соответственно, количественно представить запас прочности для крупнопролётных сооружений.
3. В результате численного моделирования рекомендованы места установки тензометрических датчиков деформации, что даёт возможность управления рисками при строительстве и реконструкциях крупнопролётных сооружений. Подобным образом датчики деформации установлены в здании ТРЦ «Июнь» на несущих балках (конёк) стеклянной крыши.
4. Комплексные разработки систем контроля за состоянием крупнопролётных конструкций в настоящее время позволяют своевременно прогнозировать потенциальное разрушение несущих конструктивных узлов, учитывая влияния климатических условий (осадков) и различной природы стихийных бедствий (землетрясений, ураганов и др.).