ВВЕДЕНИЕ 7
1. ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ 9
2. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА 11
3. ЧИСЛЕННЫЙ АЛГОРИТМ РЕШЕНИЯ 13
4. АНАЛИЗ ЧИСЛЕННЫХ РЕЗУЛЬТАТОВ 18
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 24
Фторидный цикл в технологии вольфрама основан на 3 процессах: (1) электрохимическое разложение HF в расплаве KHF2 + HF при температуре 80-100 °С с раздельным выделением газообразных фтора и водорода; (2) фторирование порошка вольфрама выделенным фтором при 300-350 °С с конденсацией образовавшегося WF6 в жидком виде при t = 2,5 :3,0 °С; (3) восстановление газообразного WF6 полученным водородом при t = 580:600 °С с конденсацией образовавшегося HF при +1 °С и направлением его на получение фтора и водорода, обеспечивая их кругооборот в цикле. В результате оптимизации указанных процессов предложены аппаратурно¬технологические решения, обеспечивающие получение в промышленном масштабе крупногабаритных заготовок плоской и цилиндрической форм для деформации, а также труб, тиглей и других изделий различных размеров из вольфрама с производительностью одной технологической линии 4,3 кг/ч (>34 т/год) при соблюдении экологических требований. В отличие от методов порошковой металлургии описанная технология обеспечивает получение плотных полуфабрикатов и изделий из чистого вольфрама с более мелкозернистой структурой и практически неограниченных размеров. При этом удельные энергозатраты на 1 кг продукции снижаются в 2,0-2,5 раза. Для повышения эффективности производства рекомендуется одновременная эксплуатация в автоматическом режиме четырех технологических линий.
Производство уникальных изделий и покрытий из вольфрама в ряде случаев возможно только при использовании процесса восстановления гексафторида вольфрама водородом. Необходимый для этого исходный материал готовят фторированием вольфрама фтором с последующей конденсацией полученного газообразного продукта. С помощью физического и математического моделирования процесса получения газообразного гексафторида вольфрама можно решить задачу по созданию импортозамещающей технологии передела металлического вольфрама. Фторидная технология передела вольфрама позволяет наносить различные покрытия и изготавливать изделия из вольфрама разнообразной формы, которые невозможно получить традиционными методами. Фторидную технологию передела вольфрама можно представить в виде последовательности двух процессов, процесса фторирования металлического вольфрама и процесса восстановления фторидов вольфрама водородом. Процесс получения газообразного гексафторида вольфрама, который образуется в результате протекания реакции между газовым потоком фтора и порошком вольфрама. Восстановление газообразного гексафторида вольфрама водородом, осуществленное в 1959 г. Горным бюро [1] и Бюро стандартов США [2], привлекло внимание исследователей благодаря открывшейся перспективе получения плотных слоев вольфрама высокой чистоты и неограниченной толщины. Процесс обладает рядом технологических преимуществ по сравнению с другими газо-фазными методами получения вольфрама [3,4]. Дальнейшее исследование, обобщенные в работах [3,5], были направлены на получение покрытий различного назначения и различных изделий из вольфрама.
Необходимы для реализации процесса гексафторид вольфрама синтезировали фторированием W-Порошка или металлических отходов вольфрама элементарным фтором с последующей конденсацией полученного продукта [6].
• Проведено численное моделирование процесса фторирования порошкообразного вольфрама
• Исследованы характерные особенности в распределении скоростей, концентрации и температуры
• Были проведены тестовые расчеты по определению зависимости степени использования фтора для реакции фторирования для продольной координаты
• Создана математическая модель, которая позволяет проводить численные исследования по выбору оптимальных условий осуществления процесса фторирования порошкообразного вольфрама