Тип работы:
Предмет:
Язык работы:


ПРИМЕНЕНИЕ ТЕОРЕМЫ О ЧЕТЫРЕХ ВЕРШИНАХ К ИССЛЕДОВАНИЮ ЛОКАЛЫ ЮГО СТРОЕНИЯ ГЛАДКОЙ ПРОСТРАНСТВЕННОЙ КРИВОЙ

Работа №185028

Тип работы

Дипломные работы, ВКР

Предмет

математика

Объем работы35
Год сдачи2016
Стоимость3600 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
19
Не подходит работа?

Узнай цену на написание


Содержание
Введение 3
Постановка задачи 3
Глава 1. История и мотивировки кусочно-линейной задачи о четырех вершинах 4
§ 1. Кривизна плоской кривой 5
§ 2. Вершины плоской кривой 6
§ 3. Кручение пространственной кривой 8
Точки уплощения пространственной кривой 9
§ 4. Теорема о четырех точках уплощения пространственной кривой 10
Глава 2 12
§ 1. Опорные вершины ломаных в пространстве 12
§ 2. Опорные вершины плоских многоугольников 16
§ 3. Теорема Александрова 18
§ 4. Теорема о четырех экстремальных вершинах 18
§ 5. Многогранники 21
§ 6. Строение пространственной кривой в окрестности обыкновенной точки.
Каноническое представление кривой 24
§ 7. Формула Тейлора для вектор-функции 26
§8. Сферические кривые 28
Заключение 29
Приложение 30
Список использованной литературы 33

функции кривизны и ее особые точки представляют интерес во многих прикладных областях.
В дифференциальной геометрии понятие кривизны хорошо определено только для класса гладких кривых и поверхностей. В приложениях обычно имеют дело с кусочно­линейными моделями, когда кривая представляется ломаной линией, а поверхность - многогранником.
Глава 1 носит обзорный подготовительный характер. Первый параграф посвящен кривизне плоской кривой. Во втором параграфе рассказывается про вершины плоской кривой. Во втором и в третьем параграфе изложена теория, связывающая понятие вершины плоской кривой с обнулением кручения подходящей пространственной кривой. Вторая глава посвящена опорным вершинам ломаных в пространстве, опорным вершинам плоских многоугольников, теореме Александрова, теореме о четырех экстремальных вершинах.
Постановка задачи
Пусть задана гладкая пространственная кривая, параметризованная длиной дуги. И пусть Мо = r(so') - некоторая неособая точка. Используя кривизну и кручение кривой в окрестности точки Мо и разложение вектор-функции r(s) в ряд Тейлора в окрестности точки Sq , мы получаем в третьей дифференциальной окрестности кривую, подобную кривой моментов в трехмерном пространстве.
Рассмотрим точки s0, sq + As, sQ + 2As, sQ + 3As и образуем выпуклую оболочку Cs этого множества точек. Для достаточно малого As и положительности кривизны и кручения в точке Sq выпуклая оболочка Cs подобна циклическому многограннику трехмерного пространства.
Если ослабить требование положительности кручения кривой, то выпуклая оболочка может не оказаться эквивалентной циклическому многограннику. Составить табличку для небольшого набора точек и возможных знаков кручения, содержащую значения определителя Вандермонда.

Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Метод, предложенный для исследования локального строения пространственной кривой допускает дальнейшее развитие и может быть продолжен в качестве работы в магистратуре.


1. Мусин О. Р.Экстремумы кривизны и теоремы о четырех вершинах для многоугольников и многогранников//Зап. Научн. Сем. ПОМИ.- 2001.- Т. 280,С. 251-271.
2. Седых В. Д. Теорема о четырех вершинах выпуклой пространственной кривой//Функц. Анализ и его прил.-1992. - Т. 26, Вып. 1.-С. 35-41.
3. Седых В. Д. Теорема о четырех вершинах плоской кривой и ее обобщения // Соросовский образовательный журнал. - 2000. - Т. 6, №. 9. - С. 122-127.
4. Седых В. Д. Теорема о четырех опорных вершинах ломаной//Функц. анализ и его прил.- 1996.- Т. 30, Вып. 3.-С. 88-90.
5. Мусин О. Р. Теорема о четырех вершинах для многоугольника // Научно­популярный физико-математический журнал "Квант". - Вып. 2. - С. 12-14.
6. Емеличев В.А. Многогранники, графы, оптимизация/ М.М.Ковалев, М.К. Кравцов- М.: Наука. Главная редакция физико-математической литературы, 1981. - 344 с.
7. Щербаков Р. Краткий курс дифференциальной геометрии/ Р. Щербаков, А. Лучинин.-Томск: Изд-во Том. ун-та, 1974.-250с.


Работу высылаем на протяжении 30 минут после оплаты.




©2025 Cервис помощи студентам в выполнении работ