Тип работы:
Предмет:
Язык работы:


АТОМНЫЕ ПРОЦЕССЫ НА ТЕРРАСАХ И КИНЕТИКА ДВИЖЕНИЯ ПРОНИЦАЕМЫХ СТУПЕНЕЙ

Работа №180107

Тип работы

Бакалаврская работа

Предмет

физика

Объем работы45
Год сдачи2019
Стоимость4400 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
11
Не подходит работа?

Узнай цену на написание


РЕФЕРАТ 3
ВВЕДЕНИЕ 3
1. Элементарные поверхностные процессы при кристаллизации из пара и
молекулярного пучка 5
2. Процессы встраивания адатомов в проницаемую ступень 13
3. Краевая задача поверхностной диффузии при росте по механизму
перемещения вицинальных ступеней 19
4. Решение задачи поверхностной диффузии в случае эквидистантных
вицинальных ступеней 22
5. Частные случаи непроницаемых ступеней и симметричного захвата
адатомов ступенью с верхней и нижней террас 28
6. Динамика вицинальных ступеней при высоких температурах роста.
Диффузионно невзаимодействующие ступени 29
7. Динамика вицинальных ступеней при низких температурах роста 33
8. Роль взаимозависимости коэффициента проницаемости и кинетических
коэффициентов встраивания в ступень 35
ЗАКЛЮЧЕНИЕ 38
СПИСОК ЛИТЕРАТУРЫ 39

С развитием полупроводниковой электроники становится всё более значимым изучение поверхностных свойств различных кристаллов и попытка контролировать исследуемые свойства для получения материалов с заданными характеристиками. Современные технологии предъявляют жёсткие требования к качеству поверхности и управлению атомными процессами, протекающими на ней, химической чистоте материала, а также структурному совершенству в целом. Особую роль в технологии изготовления полупроводниковых приборов и интегральных схем занимает процесс ориентированного выращивания монокристаллических слоёв с контролируемой степенью легирования и кристаллической структурой на подложке с заданной кристаллографической ориентацией. Данный процесс называется эпитаксией.
Изучение и глубокое понимание физико-химических процессов эпитаксиального роста предоставляют широкие возможности для создания полупроводниковых систем с заданной структурой и морфологией границ раздела.
Одним из наиболее высокотехнологичных методов выращивания кристаллов является метод кристаллизации из газовой фазы и молекулярного пучка. Низкая температура процесса кристаллизации из пара и молекулярного пучка уменьшает диффузию примеси и автолегирование, что позволяет получать качественные эпитаксиальные плёнки. К другим преимуществам данной технологии стоит отнести высокую точность управления уровнем легирования; возможность применения аналитических методов контроля в процессе роста, позволяющих управлять процессом роста на атомарном уровне и получать структуры с низкой степенью загрязнения; а также наличие атомно-гладкой поверхности растущего кристалла.
При кристаллизации из пара и молекулярного пучка встраивание адсорбированного атома в ступень в общем случае не является элементарным поверхностным процессом и состоит из отдельных актов присоединения адатома к атомно-гладкому участку края ступени, миграции вдоль края и присоединения к излому ступени с ближайшего адсорбционного места на крае или напрямую с ближайшей позиции на террасе. В случае проницаемых ступеней адатом может без предварительного встраивания в излом перейти с одной террасы на другую за счет присоединения к атомно - гладкому участку края ступени с последующим отрывом от края ступени на террасу.
В общей постановке краевой диффузионной задачи концентрация адатомов на террасе и скорость миграции ступени сложным образом зависят от многих параметров системы вицинальных ступеней и связаны с решением трансцендентных уравнений. Однако, в стационарном приближении эквидистантных прямолинейных ступеней, можно получить аналитическое решение задачи, в том числе и для случая проницаемых ступеней. Концентрация адатомов на террасе, как и скорость перемещения ступени, представляет собой определенные комбинации коэффициентов встраивания адатомов в ступень и коэффициента проницаемости ступени, которые связаны соотношениями, отражающими взаимозависимость процессов встраивания адатомов в ступень и перехода через нее на соседнюю террасу. В случае непроницаемых ступеней и симметричного захвата адатомов ступенью с верхней и нижней террас полученные выражения сводятся к известным выражениям для концентрации адатомов и скорости движения ступеней.
В первой части данной курсовой работы, являющейся литературным обзором по кинетике поверхностных процессов роста кристаллов из газовой фазы и молекулярного пучка, рассмотрены элементарные поверхностные процессы при кристаллизации из пара и молекулярного пучка и процессы встраивания адатомов в проницаемую ступень. Во второй части сформулирована общая постановка краевой задачи поверхностной диффузии при росте по механизму перемещения вицинальных ступеней, получено общее решение данной задачи в случае эквидистантных проницаемых ступеней. Проведён анализ полученных результатов в случае диффузионно невзаимодействующих ступеней, выявлена роль коэффициента проницаемости в диффузионном и кинетическом режимах роста кристалла. Также проведён анализ полученных результатов в низкотемпературном режиме роста, указана роль взаимозависимости коэффициента проницаемости и кинетических коэффициентов встраивания в ступень на положение максимума концентрации адатомов на террасе.


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Сформулирована и решена краевая задача поверхностной диффузии в случае эквидистантных проницаемых вицинальных ступеней. Получены точные выражения для распределения адатомов по террасам и для скорости перемещения вицинальной ступени, учитывающие возможную асимметрию встраивания адатомов в ступень с верхней и нижней террас (прямой и обратный барьеры Эрлиха-Швебеля), проницаемость ступени и десорбцию адатомов.
Показано, что в частном случае непроницаемых ступеней и симметричного встраивания адатомов данные выражения сводятся к известным результатам теории роста кристаллов.
Получены приближенные выражения для концентрации адатомов и скорости перемещения диффузионно невзаимодествующих ступеней. Оказывается, что кинетический режим движения ступеней для проницаемых ступеней более характерен, чем для непроницаемых.
Получены выражения для распределения адатомов и скорости перемещения ступени в случае низких температур, когда десорбцией адатомов можно пренебречь . Показано, концентрации адатомов на террасе увеличивается с увеличением проницаемости ступени. При этом положение максимума концентрации адатомов на террасе от проницаемости ступени не зависит. Это связано с тем, что увеличение потока адатомов, пересекающих ступень, компенсируется увеличением разности потоков адатомов, встраивающихся в ступень с нижней и верхней террас.


1. Современная кристаллография. Т. 3. Образование кристаллов. Под ред. Б.К. Вайнштейна. - М.: Наука, 1980. - 401 с.
2. Бартон Ф., Кабрера Н., Франк Ф. Рост кристаллов и равновесная структура их поверхностей. В сб. Элементарные процессы роста кристаллов. Под ред. Г.Г. Леммлейна и А.А. Чернова. - М.: ИЛ, 1959. - С. 11-109.
3. Чернов А.А. Слоисто-спиральный рост кристаллов. Успехи физических наук. - 1961. - Т. 73, вып. 2. - С. 277-331.
4. Markov I.V. Crystal growth for beginners, 2nd ed. - World Scientific Publishing Co. Pte. Ltd., Singapore, 2003. - 546 p.
5. Оура К., Лифшиц В.Г., Саранин А.А., Зотов А.В., Катаяма М.М. Введение в физику поверхности. - М: Наука, 2006. - 490 c.
6. Tanaka S., Bartelt N.C., Umbach C.C., Tromp R.M., Blakely J.M. Step Permeability and the Relaxation of Biperiodic Gratings on Si(001) // Phys. Rev. Lett. - 1997. - V. 78 - P. 3342-3345.
7. Filimonov S.N., Hervieu Yu.Yu. Terrace-edge-kink model of atomic processes at the permeable steps // Surf. Sci. - 2004. - V. 553, № 1. - P. 133-144.
8. Schwoebel R.L., Chipsey E.J. Step motion on crystal surface // J. Appl. Phys. - 1966. - V. 37. - P.3682-3686.
9. Ehrlich G., Hudda F.G. Atomic view of surface self-diffusion: tungsten on tungsten // J. Chem. Phys. - 1966. - V. 44. - P. 1039-1049.
10. Bales G.S., Zangwill A. Morphological instability of a terrace edge during step-flow growth. // Phys. Rev. B. - 1990. - V. 41. - P. 5500.
11. E W., Yip N.K. Continuum theory of epitaxial crystal growth. I. // J. Stat. Phys. - 2001. - V. 104. - P. 221-253.
12. Pimpinelli A., Villain J. Physics of crystal growth. - Cambridge University Press, Cambridge UK, 1998. - 377 p.
13. Ranguelov B., Altman M.S., Markov I.V. Critical terrace width for step flow growth: Effect of attachment-detachment asymmetry and step permeability // Phys. Rev. B. - 2007. - V. 75, № 24 - P. 245419.



Работу высылаем на протяжении 30 минут после оплаты.




©2025 Cервис помощи студентам в выполнении работ