СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТРУКТУРЫ НАСЛЕДСТВЕННОЙ КОМПОНЕНТЫ ПОДВЕРЖЕННОСТИ К БРОНХИАЛЬНОЙ АСТМЕ И ТУБЕРКУЛЕЗУ ПО ГЕНАМ ФЕРМЕНТОВ МЕТАБОЛИЗМА КСЕНОБИОТИКОВ
|
Список сокращений
Введение
Глава 1. Обзор литературы
1.1. Ферментативная система биотрансформации ксенобиотиков
1.1.1. Cемейства ферментов I и II фаз метаболизма
1.1.2. Свойства ферментов метаболизма ксенобиотиков
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)
1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология
Глава 2. Материал и методы исследования
2.1. Характеристика обследованных групп населения
2.1.1. Характеристика группы больных туберкулезом
2.1.2. Характеристика группы больных бронхиальной астмой
2.2. Характеристика методов исследования
2.2.1. Клинико-лабораторные методы исследования
2.2.2. Молекулярно-генетические методы исследования
2.2.3. Статистические методы анализа
Глава 3. Результаты и обсуждение
3.1. Полиморфизм генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2E1, CYP2C19) у жителей г. Томска
3.2. Оценка роли полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза
3.2.1. Ассоциация полиморфных вариантов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 с атопической бронхиальной астмой
3.2.2. Ассоциация полиморфизма генов ферментов метаболизма ксенобиотиков с туберкулезом
3.2.3. Сравнительный анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза
3.3. Анализ ассоциаций генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и туберкулезом на семейном материале
3.4. Оценка связи комбинаций генотипов генов ферментов биотрансформации ксенобиотиков с туберкулезом и бронхиальной астмой
3.5. Связь полиморфизма генов ферментов метаболизма ксенобиотиков с изменчивостью количественных признаков у больных бронхиальной астмой и туберкулезом
Заключение
Выводы
Литература
Введение
Глава 1. Обзор литературы
1.1. Ферментативная система биотрансформации ксенобиотиков
1.1.1. Cемейства ферментов I и II фаз метаболизма
1.1.2. Свойства ферментов метаболизма ксенобиотиков
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)
1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология
Глава 2. Материал и методы исследования
2.1. Характеристика обследованных групп населения
2.1.1. Характеристика группы больных туберкулезом
2.1.2. Характеристика группы больных бронхиальной астмой
2.2. Характеристика методов исследования
2.2.1. Клинико-лабораторные методы исследования
2.2.2. Молекулярно-генетические методы исследования
2.2.3. Статистические методы анализа
Глава 3. Результаты и обсуждение
3.1. Полиморфизм генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2E1, CYP2C19) у жителей г. Томска
3.2. Оценка роли полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза
3.2.1. Ассоциация полиморфных вариантов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 с атопической бронхиальной астмой
3.2.2. Ассоциация полиморфизма генов ферментов метаболизма ксенобиотиков с туберкулезом
3.2.3. Сравнительный анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза
3.3. Анализ ассоциаций генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и туберкулезом на семейном материале
3.4. Оценка связи комбинаций генотипов генов ферментов биотрансформации ксенобиотиков с туберкулезом и бронхиальной астмой
3.5. Связь полиморфизма генов ферментов метаболизма ксенобиотиков с изменчивостью количественных признаков у больных бронхиальной астмой и туберкулезом
Заключение
Выводы
Литература
Актуальность проблемы.
Генетика широко распространенных болезней человека является активно развивающейся областью исследований. Однако темп накопления сведений о конкретных генах, участвующих в их возникновении и развитии существенно уступает известным на сегодня знаниям по генетике моногенных (менделевских) болезней. Еще более скромные успехи отмечены в изучении генетических основ подверженности к инфекционным заболеваниям. В последнем случае преобладают исследования, касающиеся изучения генетических характеристик возбудителей болезней, их геномов в формировании восприимчивости (устойчивости) человека к конкретной инфекции и клинического полиморфизма болезни. Наряду с этим направлением – изучение генома самого человека, контактирующего с инфекцией, заболевшего или сохранившего здоровье - становится важной областью генетических исследований [Пузырев и др., 2002; Frodshem, Hill, 2004]. Заметим, что отечественным генетиком А.С. Серебровским (1939) было высказано положение, обозначенное им как противоречие «единства бесконечного числа признаков и конечного числа генов», нашедшее, спустя более полувека, развитие в геномных исследованиях человека и обсуждение проектов «Феном человека» [Freimer, Sabat-ti, 2003] и «Феном мыши» [Paigen, Eppig, 2000]. «Важное различие между геномом и феномом состоит в том, что в то время как геном ограничен (приблизительно 3 млрд. пар оснований у человека), феном – нет (его предел за-висит от того, как далеко мы хотим двигаться)» - эта мысль, сформулирован-ная K. Paigen и J.T. Eppig (2000) тождественна положению А.С. Серебровского (1939). Подмеченное сходство взглядов классика генетики XX века и со-временных исследователей генома человека на генофенотипические взаимо-отношения [Пузырев, 2001] является, по нашему мнению, обоснованием перспективности высказываемых и ранее гипотез о том, что клинически различные группы (нозологии) заболеваний человека могут контролироваться общим набором генов подверженности [Becker et al., 1998].
С позиции изучения вклада «общих» генов в развитие различных болезней особую актуальность приобретает исследование системы генов метаболизма ксенобиотиков, поскольку ферментами этой системы осуществляется метаболизм не только большинства разнообразных по химической структуре экзогенных молекул, но и многочисленных эндогенных веществ, например, медиаторов воспаления. Система ферментов метаболизма ксенобиотиков представляет собой сформировавшийся в процессе эволюции механизм адаптации организма к воздействию токсичных экзогенных и эндогенных веществ. Предполагается, что различия в скорости деградации различных субстратов ферментами метаболизма могут лежать в основе неодинаковой восприимчивости к ряду заболеваний. Изучению участия генов этой системы в развитии онкопатологии, эндометриоза, бронхиальной астмы, хронической обструктивной болезни легких, инфекционных заболеваний посвящены многие работы отечественных и зарубежных авторов [Lin et al., 1998; Иващенко и др., 2001; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004]. Очевидно, что генетические различия в регуляции, экспрессии и активности генов ферментов биотрансформации ксенобиотиков являются решающими факторами в развитии болезни и позволяют рассматривать ее как важное звено в этиологии и патогенезе этих заболеваний.
Особое внимание исследователей привлекает участие ферментативной системы метаболизма в биотрансформации лекарственных препаратов [Nebert, 1997]. Изучение полиморфизма генов этой системы в различных популяциях, обусловливающего существование индивидуальных особенностей метаболизма лекарственных препаратов, проявляющихся различиями в эффективности терапии и наличием многообразных побочных эффектов медикаментозной нагрузки, являются достаточно перспективными в практическом применении.
Представляется перспективным проведение сравнительного анализа участия белков ферментов метаболизма ксенобиотиков в возникновении и развитии заболеваний, которые с одной стороны, часто сочетаются друг с другом у одного индивидуума (синтропии), с другой – редко или совсем не встречаются вместе (дистропии).
Туберкулез (ТБ) и бронхиальная астма (БА), являющиеся частой патологией народонаселения, по-видимому, относятся к дистропным заболеваниям. Так, эпидемиологическая парадигма свидетельствует о том, что риск раз-вития атопической БА и ее различных клинических проявлений в течение жизни намного ниже у индивидов, перенесших ТБ в детском возрасте [Von Hertzen et al., 1999, Shirakawa et al., 1997]. Тем не менее, показано, что при БА и ТБ имеет место общая генетическая основа (гены системы HLA, интерлейкинов и их рецепторных антагонистов и др.), обусловленная функциональной значимостью продуктов экспрессии этих генов в инфекционно-аллергическом процессе [Sandford et al., 1996; Greenwod et al., 2000; Bellamy, 2000; Sengler et al., 2002].
Таким образом, изучение роли полиморфных вариантов генов системы метаболизма в развитии БА и ТБ актуально и предполагает исследование их связи с клиническими особенностями течения заболеваний для понимания механизмов взаимодействия в процессе реализации наследственной информации на уровне целостного организма.
Цель работы: Провести сравнительный анализ значения полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза легких, оценить их роль в формировании клинических проявлений данных заболеваний у жителей города Томска.
Задачи исследования:
1. Изучить распространенность частот полиморфных вариантов генов ферментов метаболизма ксенобиотиков (CYP2C19, CYP2E1, GSTT1, GSTM1 и GSTP1) в выборке здоровых индивидов.
2. Оценить связь полиморфизмов исследуемых генов с атопической бронхиальной астмой и туберкулезом легких.
3. Изучить связь полиморфных вариантов, включенных в исследование генов, с клиническими особенностями течения бронхиальной астмы и туберкулеза легких, а также с патогенетически значимыми для этих заболеваний качественными и количественными признаками.
4. Провести сравнительный анализ роли полиморфных вариантов генов системы метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза.
Научная новизна:
Получены новые знания о роли генов ферментов биотрансформации ксенобиотиков (GSTT1, GSTM1, GSTP1, CYP2E1, CYP2C19) в развитии бронхиальной астмы и туберкулеза легких у жителей города Томска. Впервые проведена сравнительная оценка значимости исследуемых полиморфных вариантов генов системы метаболизма в развитии бронхолегочных патологий (на примере бронхиальной астмы и туберкулеза). Выявлены ассоциации полиморфизма генов GSTM1 (делеция) и CYP2E1 (7632T>A) с развитием бронхиальной астмы, а GSTP1 (313A>G) – с туберкулезом. Изучено влияние полиморфных вариантов генов системы метаболизма на развитие различных клинических особенностей течения заболеваний. Впервые проведена сравни-тельная оценка относительного риска в зависимости от комбинаций генотипов исследуемых генов для развития бронхиальной астмы и туберкулеза. Установлена роль генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2C19, CYP2E1) в детерминации изменчивости количественных, патогенетически значимых для заболеваний признаков. Показана связь полиморфного варианта 313A>G гена GSTP1 с изменчивостью уровня аланинаминотрансферазы у больных туберкулезом легких во время лечения антимикобактериальными препаратами.
Практическая значимость:
Полученные результаты исследования могут быть положены в основу разработки скрининговых программ по выявлению лиц с повышенным риском развития бронхиальной астмы и туберкулеза. Сведения о связи полиморфных вариантов генов ферментов метаболизма ксенобиотиков с изменчивостью показателей печеночной функции могут быть учтены при проведении профилактических мероприятий с целью предотвращения проявлений гепатотоксичности во время противотуберкулезной терапии. Материалы работы могут быть использованы в учебно-методическом процессе на биологических и медицинских факультетах ВУЗов. Полученная информация о полиморфизме генов ферментов биотрансформации ксенобиотиков у русских жителей города Томска может быть использована при проведении генетико-эпидемиологических исследований широко распространенных заболеваний.
Положения, выносимые на защиту:
1. Генетическими маркерами подверженности к бронхиальной астме могут быть генотип Т/А (полиморфизм 7632Т>А) гена CYP2E1 и «нулевой» генотип делеционного полиморфизма гена GSTM1.
2. У жителей города Томска генотип G/G гена GSTP1 (полиморфизм 313A>G) снижает риск развития туберкулеза.
3. Фактором генетической предрасположенности к бронхиальной астме является «нулевой» генотип гена GSTM1 как в сочетании с генотипом GSTT1+, так и в комбинации с гетерозиготным генотипом гена CYP2E1 (полиморфизм 7632Т>А).
4. «Нулевой» генотип гена GSTM1 и генотип *1/*1 гена CYP2C19 оказывают влияние на формирование клинических фенотипов бронхиальной астмы, определяющихся такими показателями как: уровень общего иммуноглобулина Е в сыворотке крови и форсированная жизненная емкость легких.
5. Изменчивость признаков, характеризующих особенности клинического течения туберкулеза (уровень эритроцитов и аланинаминотрансферазы), определяется полиморфными вариантами генов CYP2C19 (681G>A) и GSTP1 (313A>G) системы метаболизма ксенобиотиков.
Апробация работы:
Основные результаты исследования по теме диссертационной работы доложены и обсуждены на межлабораторных научных семинарах ГУ НИИ медицинской генетики ТНЦ СО РАМН (Томск, 2002, 2003); VI, VII научных конференциях «Генетика человека и патология» (Томск, 2002, 2004); IV Международном конгрессе молодых ученых «Науки о человеке» (Томск, 2003); V съезде Российского общества медицинских генетиков (Уфа, 2005).
Генетика широко распространенных болезней человека является активно развивающейся областью исследований. Однако темп накопления сведений о конкретных генах, участвующих в их возникновении и развитии существенно уступает известным на сегодня знаниям по генетике моногенных (менделевских) болезней. Еще более скромные успехи отмечены в изучении генетических основ подверженности к инфекционным заболеваниям. В последнем случае преобладают исследования, касающиеся изучения генетических характеристик возбудителей болезней, их геномов в формировании восприимчивости (устойчивости) человека к конкретной инфекции и клинического полиморфизма болезни. Наряду с этим направлением – изучение генома самого человека, контактирующего с инфекцией, заболевшего или сохранившего здоровье - становится важной областью генетических исследований [Пузырев и др., 2002; Frodshem, Hill, 2004]. Заметим, что отечественным генетиком А.С. Серебровским (1939) было высказано положение, обозначенное им как противоречие «единства бесконечного числа признаков и конечного числа генов», нашедшее, спустя более полувека, развитие в геномных исследованиях человека и обсуждение проектов «Феном человека» [Freimer, Sabat-ti, 2003] и «Феном мыши» [Paigen, Eppig, 2000]. «Важное различие между геномом и феномом состоит в том, что в то время как геном ограничен (приблизительно 3 млрд. пар оснований у человека), феном – нет (его предел за-висит от того, как далеко мы хотим двигаться)» - эта мысль, сформулирован-ная K. Paigen и J.T. Eppig (2000) тождественна положению А.С. Серебровского (1939). Подмеченное сходство взглядов классика генетики XX века и со-временных исследователей генома человека на генофенотипические взаимо-отношения [Пузырев, 2001] является, по нашему мнению, обоснованием перспективности высказываемых и ранее гипотез о том, что клинически различные группы (нозологии) заболеваний человека могут контролироваться общим набором генов подверженности [Becker et al., 1998].
С позиции изучения вклада «общих» генов в развитие различных болезней особую актуальность приобретает исследование системы генов метаболизма ксенобиотиков, поскольку ферментами этой системы осуществляется метаболизм не только большинства разнообразных по химической структуре экзогенных молекул, но и многочисленных эндогенных веществ, например, медиаторов воспаления. Система ферментов метаболизма ксенобиотиков представляет собой сформировавшийся в процессе эволюции механизм адаптации организма к воздействию токсичных экзогенных и эндогенных веществ. Предполагается, что различия в скорости деградации различных субстратов ферментами метаболизма могут лежать в основе неодинаковой восприимчивости к ряду заболеваний. Изучению участия генов этой системы в развитии онкопатологии, эндометриоза, бронхиальной астмы, хронической обструктивной болезни легких, инфекционных заболеваний посвящены многие работы отечественных и зарубежных авторов [Lin et al., 1998; Иващенко и др., 2001; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004]. Очевидно, что генетические различия в регуляции, экспрессии и активности генов ферментов биотрансформации ксенобиотиков являются решающими факторами в развитии болезни и позволяют рассматривать ее как важное звено в этиологии и патогенезе этих заболеваний.
Особое внимание исследователей привлекает участие ферментативной системы метаболизма в биотрансформации лекарственных препаратов [Nebert, 1997]. Изучение полиморфизма генов этой системы в различных популяциях, обусловливающего существование индивидуальных особенностей метаболизма лекарственных препаратов, проявляющихся различиями в эффективности терапии и наличием многообразных побочных эффектов медикаментозной нагрузки, являются достаточно перспективными в практическом применении.
Представляется перспективным проведение сравнительного анализа участия белков ферментов метаболизма ксенобиотиков в возникновении и развитии заболеваний, которые с одной стороны, часто сочетаются друг с другом у одного индивидуума (синтропии), с другой – редко или совсем не встречаются вместе (дистропии).
Туберкулез (ТБ) и бронхиальная астма (БА), являющиеся частой патологией народонаселения, по-видимому, относятся к дистропным заболеваниям. Так, эпидемиологическая парадигма свидетельствует о том, что риск раз-вития атопической БА и ее различных клинических проявлений в течение жизни намного ниже у индивидов, перенесших ТБ в детском возрасте [Von Hertzen et al., 1999, Shirakawa et al., 1997]. Тем не менее, показано, что при БА и ТБ имеет место общая генетическая основа (гены системы HLA, интерлейкинов и их рецепторных антагонистов и др.), обусловленная функциональной значимостью продуктов экспрессии этих генов в инфекционно-аллергическом процессе [Sandford et al., 1996; Greenwod et al., 2000; Bellamy, 2000; Sengler et al., 2002].
Таким образом, изучение роли полиморфных вариантов генов системы метаболизма в развитии БА и ТБ актуально и предполагает исследование их связи с клиническими особенностями течения заболеваний для понимания механизмов взаимодействия в процессе реализации наследственной информации на уровне целостного организма.
Цель работы: Провести сравнительный анализ значения полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза легких, оценить их роль в формировании клинических проявлений данных заболеваний у жителей города Томска.
Задачи исследования:
1. Изучить распространенность частот полиморфных вариантов генов ферментов метаболизма ксенобиотиков (CYP2C19, CYP2E1, GSTT1, GSTM1 и GSTP1) в выборке здоровых индивидов.
2. Оценить связь полиморфизмов исследуемых генов с атопической бронхиальной астмой и туберкулезом легких.
3. Изучить связь полиморфных вариантов, включенных в исследование генов, с клиническими особенностями течения бронхиальной астмы и туберкулеза легких, а также с патогенетически значимыми для этих заболеваний качественными и количественными признаками.
4. Провести сравнительный анализ роли полиморфных вариантов генов системы метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза.
Научная новизна:
Получены новые знания о роли генов ферментов биотрансформации ксенобиотиков (GSTT1, GSTM1, GSTP1, CYP2E1, CYP2C19) в развитии бронхиальной астмы и туберкулеза легких у жителей города Томска. Впервые проведена сравнительная оценка значимости исследуемых полиморфных вариантов генов системы метаболизма в развитии бронхолегочных патологий (на примере бронхиальной астмы и туберкулеза). Выявлены ассоциации полиморфизма генов GSTM1 (делеция) и CYP2E1 (7632T>A) с развитием бронхиальной астмы, а GSTP1 (313A>G) – с туберкулезом. Изучено влияние полиморфных вариантов генов системы метаболизма на развитие различных клинических особенностей течения заболеваний. Впервые проведена сравни-тельная оценка относительного риска в зависимости от комбинаций генотипов исследуемых генов для развития бронхиальной астмы и туберкулеза. Установлена роль генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2C19, CYP2E1) в детерминации изменчивости количественных, патогенетически значимых для заболеваний признаков. Показана связь полиморфного варианта 313A>G гена GSTP1 с изменчивостью уровня аланинаминотрансферазы у больных туберкулезом легких во время лечения антимикобактериальными препаратами.
Практическая значимость:
Полученные результаты исследования могут быть положены в основу разработки скрининговых программ по выявлению лиц с повышенным риском развития бронхиальной астмы и туберкулеза. Сведения о связи полиморфных вариантов генов ферментов метаболизма ксенобиотиков с изменчивостью показателей печеночной функции могут быть учтены при проведении профилактических мероприятий с целью предотвращения проявлений гепатотоксичности во время противотуберкулезной терапии. Материалы работы могут быть использованы в учебно-методическом процессе на биологических и медицинских факультетах ВУЗов. Полученная информация о полиморфизме генов ферментов биотрансформации ксенобиотиков у русских жителей города Томска может быть использована при проведении генетико-эпидемиологических исследований широко распространенных заболеваний.
Положения, выносимые на защиту:
1. Генетическими маркерами подверженности к бронхиальной астме могут быть генотип Т/А (полиморфизм 7632Т>А) гена CYP2E1 и «нулевой» генотип делеционного полиморфизма гена GSTM1.
2. У жителей города Томска генотип G/G гена GSTP1 (полиморфизм 313A>G) снижает риск развития туберкулеза.
3. Фактором генетической предрасположенности к бронхиальной астме является «нулевой» генотип гена GSTM1 как в сочетании с генотипом GSTT1+, так и в комбинации с гетерозиготным генотипом гена CYP2E1 (полиморфизм 7632Т>А).
4. «Нулевой» генотип гена GSTM1 и генотип *1/*1 гена CYP2C19 оказывают влияние на формирование клинических фенотипов бронхиальной астмы, определяющихся такими показателями как: уровень общего иммуноглобулина Е в сыворотке крови и форсированная жизненная емкость легких.
5. Изменчивость признаков, характеризующих особенности клинического течения туберкулеза (уровень эритроцитов и аланинаминотрансферазы), определяется полиморфными вариантами генов CYP2C19 (681G>A) и GSTP1 (313A>G) системы метаболизма ксенобиотиков.
Апробация работы:
Основные результаты исследования по теме диссертационной работы доложены и обсуждены на межлабораторных научных семинарах ГУ НИИ медицинской генетики ТНЦ СО РАМН (Томск, 2002, 2003); VI, VII научных конференциях «Генетика человека и патология» (Томск, 2002, 2004); IV Международном конгрессе молодых ученых «Науки о человеке» (Томск, 2003); V съезде Российского общества медицинских генетиков (Уфа, 2005).
Ферментативная система метаболизма ксенобиотиков является практически универсальным механизмом, поддерживающим внутренний баланс и способствующим сохранности здоровья организма человека. Существовавшая изначально для метаболизма эндогенных субстратов, система эволюционировала, адаптируясь к техногенному загрязнению окружающей среды. В её функционировании задействованы уникальные по своим свойствам ферменты: гемопротеид – цитохром Р450, низкомолекулярный трипептид - глутатион и др. С помощью целых семейств этих ферментов с одинаковой каталитической активностью и различной субстратной специфичностью метаболизируются сотни самых разных по химическому составу соединений. Одним из важнейших свойств системы метаболизма является индукция – активация транскрипции гена в присутствии субстрата. Тканеспецифичная экспрессия различных изоформ метаболизма определяет ее адаптацию к структурно-функциональной организации той или иной системы организма. Наибольшая экспрессия ферментов в печени обеспечивает наиболее активное участие этого органа в метаболизме ксенобиотиков. В совокупности все ферменты, участвующие в деградации молекул ксенобиотиков, функционируют как единый, четко скоординированный комплекс. Поэтому отклонение их функции неизменно приводит к вредным для организма человека последствиям. Это обстоятельство подтверждают многочисленные исследования о функционировании системы метаболизма при различных воздействиях окружающей среды и патологических состояниях [Lin et al., 1998; Иващенко и др., 2000; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004].
Согласно современным представлениям БА и ТБ относятся к группе дистропных болезней. Однако многочисленные проведенные исследования поиска генетической компоненты подверженности к этим заболеваниям показали ряд «общих» генов, белковые продукты которых задействованы на всех этапах патогенеза. С этой точки зрения целесообразным и перспективным представлялся сравнительный анализ полиморфных вариантов генов системы метаболизма ксенобиотиков, поскольку кодируемые ими ферменты задействованы в деградации эндогенных субстратов, а именно многочисленных медиаторов воспаления (простагландинов, лейкотриенов и т. д.), что легло в основу настоящего исследования.
Ряд работ показал связь генов ферментов метаболизма ксенобиотиков с развитием БА и её клиническими проявлениями в различных популяциях [Luszawaka-Kutrzela, 1999; Ляхович и др., 2000, 2002; Fryer et al., 2000; Иващенко и др., 2001; Gawronska-Szklarz et al., 2001; Вавилин и др., 2002; Gilliand et al., 2002; Сафронова и др., 2003; Brasch-Andersen et al., 2004; Tamer et al., 2004; Carroll, 2005]. Однако, учитывая значительные этнические различия в полиморфизме генов этой системы, существует противоречивая информация об их значимости для развития заболевания.
При оценке роли полиморфизма генов метаболизма ксенобиотиков для развития БА у жителей г. Томска показана ассоциация полиморфизма генов ферментов как I-й – CYP2E1, так и II фазы – GSTM1 с заболеванием.
Для носителей делеции гена GSTM1, приводящей к утрате активности соответствующего фермента, существует возможность дисбаланса процессов детоксикации экзогенных и эндогенных веществ, что повышает для них в два раза риск развития заболевания БА по сравнению с индивидами, имеющими функциональный генотип. Следует отметить, что подобные данные были получены во многих исследованиях, как для европеоидных, так и для монголоидных популяций [Вавилин и др., 2002; Ляхович и др., 2000; Zhang et al., 2004]. Можно предполагать, что эта ассоциация является важным следствием множественности биологических функций глутатионовых S-трансфераз и обусловлена их участием в метаболизме эндогенных медиаторов воспаления (простагландинов Н2, E2, F2a, лейкотриена С4). Однако интересно, что в про-явлении тяжести заболевания не отмечена значимость этого гена, а у пациентов с легкой степенью тяжести преобладал делеционный генотип гена GSTT1. Тяжесть БА определяется многими факторами (пол, возраст начала, отягощенная наследственность, предшествующее лечение, сопутствующие аллергические заболевания), и в настоящее время нет четких представлений о формировании клинического полиморфизма заболевания [Огородова и др., 2002]. В данном случае, можно лишь предполагать, что при наличии отчетливо неблагоприятного генотипа, развитие патологического процесса может сдерживаться присутствием в геноме индивида генов, контролирующих вы-работку белковых структур, которые препятствуют развитию более тяжелой степени течения БА.
В ходе исследования были получены данные о связи ТБ с другими генами системы метаболизма. Так, в отношении инфекционного заболевания показана протективная роль полиморфиза 313A>G гена GSTP1 фермента II-й фазы метаболизма. Эта ассоциация объясняется с позиции высокой экспрессии глутатионовой S-трансферазы π1 в легких, защищающих таким образом человека на пути воздействия на организм токсичных агентов окружающей среды (например, химических соединений, содержащихся в табачном дыме и выхлопных газах), которые можно отнести к факторам, провоцирующим развитие ТБ.
Анализ полиморфизма исследуемых генов в формировании и степени выраженности клинических проявлений ТБ показал, что последствия возможной активации CYP2C19 нарушают оксидантное равновесие при уже развившемся заболевании, а развитие окислительного стресса способствует усилению процессов деструкции в легочной ткани.
Несомненно, единственной причиной развития ТБ является инфицирование организма M. tuberculosis. Однако дальнейшая судьба возбудителя болезни зависит от многих факторов, которые в совокупности определяют полиморфизм клинических форм заболевания. Так, показаны различия между группами больных с ТБ внутригрудных лимфоузлов и инфильтративным ТБ для полиморфизма 313A>G гена GSTP1, играющего роль в подверженности к заболеванию.
В исследованиях дизайна «случай-контроль» особую важность приобретает использование для анализа ассоциаций генетических факторов с заболеванием семейного материала, позволяющего проследить наследование ал-лелей, связанных с болезнью. В ходе данного исследования показано пред-почтительное наследование аллеля 313G гена GSTP1 больными БА потомка-ми от гетерозиготных родителей.
Важная информация о взаимодействии ферментов системы метаболизма двух фаз для оценки их вклада в подверженность к заболеваниям была получена при анализе носителей определенных сочетаний генотипов. Отме-чена комбинация генотипов генов ферментов II фазы метаболизма GSTM1 и GSTP1, оказывающая протективную роль как в отношении развития БА, так и ТБ. В большинстве случаев протективная роль комбинаций генотипов в от-ношении БА показана при сочетании аллелей генов, которые обеспечивают полноценное функционирование соответствующих ферментов системы метаболизма обеих фаз. Выявлена комбинация генотипов полиморфных вариантов генов GSTM1 и CYP2E1, предрасполагающая к развитию БА, но оказывающая протективную роль в отношении ТБ. Среди всех проанализированных комбинаций полиморфных вариантов генов не показано ни одного сочетания, имеющего патогенетическую значимость в развитии ТБ. Полученные данные свидетельствуют, что эффекты комбинаций определенных генотипов генов ФМК различны в развитии БА и ТБ.
Следующим этапом исследования было изучение связи исследуемых полиморфных вариантов генов с количественными лабораторными показателями, характеризующими особенности течения различных по этиологии и патогенезу заболеваний. Учитывая варьирование количественных признаков в зависимости от пола, оценка вклада полиморфизма генов системы биотрансформации ксенобиотиков была проведена отдельно для мужчин и женщин и показала участие генов ферментов как I-й так и II-й фаз метаболизма. Так отмечена связь гена CYP2C19 с изменчивостью IgE у женщин и GSTM1 – с показателем форсированной жизненной емкости легких, которые относятся к важным количественным характеристикам проявлений БА. Оценка гемато-логических показателей крови у мужчин, больных ТБ выявила связь поли-морфизма гена CYP2C19 с изменчивостью уровня эритроцитов в периферической крови. Неодинаковый характер ассоциаций генов ферментов метаболизма с количественными признаками у мужчин и женщин позволяет пред-положить, что та часть структуры наследственной компоненты предрасположенности к заболеваниям, которая связана с полиморфизмом этих генов, не-одинакова у представителей разного пола, что выражается в дифференциальной частоте многих болезней у мужчин и женщин в одной популяции.
Особую ценность для практического здравоохранения приобретают результаты настоящего исследования в свете участия генов ферментов метаболизма ксенобиотиков в формировании гепатотоксичных реакций на противотуберкулезную терапию. Выявленная ассоциация повышения активности аланинаминотрансферазы после лечения антимикобактериальными препаратами с полиморфным вариантом гена GSTP1 в дальнейшем может использоваться для разработки комплекса профилактических мер по предотвращению побочных реакций от химиотерапии ТБ.
В целом, полученные результаты свидетельствуют, что наличие определенных генотипов и их комбинаций генов ферментов метаболизма ксенобиотиков может оказывать существенное влияние на предрасположенность и формирование клинического фенотипа БА и ТБ. Сравнительный анализ участия генов ферментов биотрансформации ксенобиотиков в развитии БА и ТБ позволил раскрыть некоторые генетические аспекты этих дистропных заболеваний. В ходе исследования показана дифференциация генов, задействованных в формировании клинического фенотипа заболеваний: гены GSTM1 и CYP2E1 связаны с БА и ее клиническими проявлениями, а GSTP1 - с развитием ТБ. Из исследуемых полиморфных вариантов генов ферментативной системы биотрансформации отмечен «общий» ген – CYP2C19, ассоциированный с изменчивостью признаков, характеризующих некоторые особенности течения этих двух заболеваний. Одним из предполагаемых функциональных механизмов, лежащих в основе полученных ассоциаций, может быть участие белковых продуктов соответствующих генов в метаболизме эндо-генных ксенобиотиков, в том числе многочисленных медиаторов воспали-тельных реакций. Актуальность продолжения исследований сравнительного характера клинически различных групп заболеваний не вызывает сомнения, поскольку полученные результаты позволяют не только приблизиться к пониманию молекулярно-генетических основ подверженности к ним, но и в дальнейшем открывают перспективы профилактики их развития.
Согласно современным представлениям БА и ТБ относятся к группе дистропных болезней. Однако многочисленные проведенные исследования поиска генетической компоненты подверженности к этим заболеваниям показали ряд «общих» генов, белковые продукты которых задействованы на всех этапах патогенеза. С этой точки зрения целесообразным и перспективным представлялся сравнительный анализ полиморфных вариантов генов системы метаболизма ксенобиотиков, поскольку кодируемые ими ферменты задействованы в деградации эндогенных субстратов, а именно многочисленных медиаторов воспаления (простагландинов, лейкотриенов и т. д.), что легло в основу настоящего исследования.
Ряд работ показал связь генов ферментов метаболизма ксенобиотиков с развитием БА и её клиническими проявлениями в различных популяциях [Luszawaka-Kutrzela, 1999; Ляхович и др., 2000, 2002; Fryer et al., 2000; Иващенко и др., 2001; Gawronska-Szklarz et al., 2001; Вавилин и др., 2002; Gilliand et al., 2002; Сафронова и др., 2003; Brasch-Andersen et al., 2004; Tamer et al., 2004; Carroll, 2005]. Однако, учитывая значительные этнические различия в полиморфизме генов этой системы, существует противоречивая информация об их значимости для развития заболевания.
При оценке роли полиморфизма генов метаболизма ксенобиотиков для развития БА у жителей г. Томска показана ассоциация полиморфизма генов ферментов как I-й – CYP2E1, так и II фазы – GSTM1 с заболеванием.
Для носителей делеции гена GSTM1, приводящей к утрате активности соответствующего фермента, существует возможность дисбаланса процессов детоксикации экзогенных и эндогенных веществ, что повышает для них в два раза риск развития заболевания БА по сравнению с индивидами, имеющими функциональный генотип. Следует отметить, что подобные данные были получены во многих исследованиях, как для европеоидных, так и для монголоидных популяций [Вавилин и др., 2002; Ляхович и др., 2000; Zhang et al., 2004]. Можно предполагать, что эта ассоциация является важным следствием множественности биологических функций глутатионовых S-трансфераз и обусловлена их участием в метаболизме эндогенных медиаторов воспаления (простагландинов Н2, E2, F2a, лейкотриена С4). Однако интересно, что в про-явлении тяжести заболевания не отмечена значимость этого гена, а у пациентов с легкой степенью тяжести преобладал делеционный генотип гена GSTT1. Тяжесть БА определяется многими факторами (пол, возраст начала, отягощенная наследственность, предшествующее лечение, сопутствующие аллергические заболевания), и в настоящее время нет четких представлений о формировании клинического полиморфизма заболевания [Огородова и др., 2002]. В данном случае, можно лишь предполагать, что при наличии отчетливо неблагоприятного генотипа, развитие патологического процесса может сдерживаться присутствием в геноме индивида генов, контролирующих вы-работку белковых структур, которые препятствуют развитию более тяжелой степени течения БА.
В ходе исследования были получены данные о связи ТБ с другими генами системы метаболизма. Так, в отношении инфекционного заболевания показана протективная роль полиморфиза 313A>G гена GSTP1 фермента II-й фазы метаболизма. Эта ассоциация объясняется с позиции высокой экспрессии глутатионовой S-трансферазы π1 в легких, защищающих таким образом человека на пути воздействия на организм токсичных агентов окружающей среды (например, химических соединений, содержащихся в табачном дыме и выхлопных газах), которые можно отнести к факторам, провоцирующим развитие ТБ.
Анализ полиморфизма исследуемых генов в формировании и степени выраженности клинических проявлений ТБ показал, что последствия возможной активации CYP2C19 нарушают оксидантное равновесие при уже развившемся заболевании, а развитие окислительного стресса способствует усилению процессов деструкции в легочной ткани.
Несомненно, единственной причиной развития ТБ является инфицирование организма M. tuberculosis. Однако дальнейшая судьба возбудителя болезни зависит от многих факторов, которые в совокупности определяют полиморфизм клинических форм заболевания. Так, показаны различия между группами больных с ТБ внутригрудных лимфоузлов и инфильтративным ТБ для полиморфизма 313A>G гена GSTP1, играющего роль в подверженности к заболеванию.
В исследованиях дизайна «случай-контроль» особую важность приобретает использование для анализа ассоциаций генетических факторов с заболеванием семейного материала, позволяющего проследить наследование ал-лелей, связанных с болезнью. В ходе данного исследования показано пред-почтительное наследование аллеля 313G гена GSTP1 больными БА потомка-ми от гетерозиготных родителей.
Важная информация о взаимодействии ферментов системы метаболизма двух фаз для оценки их вклада в подверженность к заболеваниям была получена при анализе носителей определенных сочетаний генотипов. Отме-чена комбинация генотипов генов ферментов II фазы метаболизма GSTM1 и GSTP1, оказывающая протективную роль как в отношении развития БА, так и ТБ. В большинстве случаев протективная роль комбинаций генотипов в от-ношении БА показана при сочетании аллелей генов, которые обеспечивают полноценное функционирование соответствующих ферментов системы метаболизма обеих фаз. Выявлена комбинация генотипов полиморфных вариантов генов GSTM1 и CYP2E1, предрасполагающая к развитию БА, но оказывающая протективную роль в отношении ТБ. Среди всех проанализированных комбинаций полиморфных вариантов генов не показано ни одного сочетания, имеющего патогенетическую значимость в развитии ТБ. Полученные данные свидетельствуют, что эффекты комбинаций определенных генотипов генов ФМК различны в развитии БА и ТБ.
Следующим этапом исследования было изучение связи исследуемых полиморфных вариантов генов с количественными лабораторными показателями, характеризующими особенности течения различных по этиологии и патогенезу заболеваний. Учитывая варьирование количественных признаков в зависимости от пола, оценка вклада полиморфизма генов системы биотрансформации ксенобиотиков была проведена отдельно для мужчин и женщин и показала участие генов ферментов как I-й так и II-й фаз метаболизма. Так отмечена связь гена CYP2C19 с изменчивостью IgE у женщин и GSTM1 – с показателем форсированной жизненной емкости легких, которые относятся к важным количественным характеристикам проявлений БА. Оценка гемато-логических показателей крови у мужчин, больных ТБ выявила связь поли-морфизма гена CYP2C19 с изменчивостью уровня эритроцитов в периферической крови. Неодинаковый характер ассоциаций генов ферментов метаболизма с количественными признаками у мужчин и женщин позволяет пред-положить, что та часть структуры наследственной компоненты предрасположенности к заболеваниям, которая связана с полиморфизмом этих генов, не-одинакова у представителей разного пола, что выражается в дифференциальной частоте многих болезней у мужчин и женщин в одной популяции.
Особую ценность для практического здравоохранения приобретают результаты настоящего исследования в свете участия генов ферментов метаболизма ксенобиотиков в формировании гепатотоксичных реакций на противотуберкулезную терапию. Выявленная ассоциация повышения активности аланинаминотрансферазы после лечения антимикобактериальными препаратами с полиморфным вариантом гена GSTP1 в дальнейшем может использоваться для разработки комплекса профилактических мер по предотвращению побочных реакций от химиотерапии ТБ.
В целом, полученные результаты свидетельствуют, что наличие определенных генотипов и их комбинаций генов ферментов метаболизма ксенобиотиков может оказывать существенное влияние на предрасположенность и формирование клинического фенотипа БА и ТБ. Сравнительный анализ участия генов ферментов биотрансформации ксенобиотиков в развитии БА и ТБ позволил раскрыть некоторые генетические аспекты этих дистропных заболеваний. В ходе исследования показана дифференциация генов, задействованных в формировании клинического фенотипа заболеваний: гены GSTM1 и CYP2E1 связаны с БА и ее клиническими проявлениями, а GSTP1 - с развитием ТБ. Из исследуемых полиморфных вариантов генов ферментативной системы биотрансформации отмечен «общий» ген – CYP2C19, ассоциированный с изменчивостью признаков, характеризующих некоторые особенности течения этих двух заболеваний. Одним из предполагаемых функциональных механизмов, лежащих в основе полученных ассоциаций, может быть участие белковых продуктов соответствующих генов в метаболизме эндо-генных ксенобиотиков, в том числе многочисленных медиаторов воспали-тельных реакций. Актуальность продолжения исследований сравнительного характера клинически различных групп заболеваний не вызывает сомнения, поскольку полученные результаты позволяют не только приблизиться к пониманию молекулярно-генетических основ подверженности к ним, но и в дальнейшем открывают перспективы профилактики их развития.



