СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТРУКТУРЫ НАСЛЕДСТВЕННОЙ КОМПОНЕНТЫ ПОДВЕРЖЕННОСТИ К БРОНХИАЛЬНОЙ АСТМЕ И ТУБЕРКУЛЕЗУ ПО ГЕНАМ ФЕРМЕНТОВ МЕТАБОЛИЗМА КСЕНОБИОТИКОВ
Список сокращений
Введение
Глава 1. Обзор литературы
1.1. Ферментативная система биотрансформации ксенобиотиков
1.1.1. Cемейства ферментов I и II фаз метаболизма
1.1.2. Свойства ферментов метаболизма ксенобиотиков
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)
1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология
Глава 2. Материал и методы исследования
2.1. Характеристика обследованных групп населения
2.1.1. Характеристика группы больных туберкулезом
2.1.2. Характеристика группы больных бронхиальной астмой
2.2. Характеристика методов исследования
2.2.1. Клинико-лабораторные методы исследования
2.2.2. Молекулярно-генетические методы исследования
2.2.3. Статистические методы анализа
Глава 3. Результаты и обсуждение
3.1. Полиморфизм генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2E1, CYP2C19) у жителей г. Томска
3.2. Оценка роли полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза
3.2.1. Ассоциация полиморфных вариантов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 с атопической бронхиальной астмой
3.2.2. Ассоциация полиморфизма генов ферментов метаболизма ксенобиотиков с туберкулезом
3.2.3. Сравнительный анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза
3.3. Анализ ассоциаций генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и туберкулезом на семейном материале
3.4. Оценка связи комбинаций генотипов генов ферментов биотрансформации ксенобиотиков с туберкулезом и бронхиальной астмой
3.5. Связь полиморфизма генов ферментов метаболизма ксенобиотиков с изменчивостью количественных признаков у больных бронхиальной астмой и туберкулезом
Заключение
Выводы
Литература
Актуальность проблемы.
Генетика широко распространенных болезней человека является активно развивающейся областью исследований. Однако темп накопления сведений о конкретных генах, участвующих в их возникновении и развитии существенно уступает известным на сегодня знаниям по генетике моногенных (менделевских) болезней. Еще более скромные успехи отмечены в изучении генетических основ подверженности к инфекционным заболеваниям. В последнем случае преобладают исследования, касающиеся изучения генетических характеристик возбудителей болезней, их геномов в формировании восприимчивости (устойчивости) человека к конкретной инфекции и клинического полиморфизма болезни. Наряду с этим направлением – изучение генома самого человека, контактирующего с инфекцией, заболевшего или сохранившего здоровье - становится важной областью генетических исследований [Пузырев и др., 2002; Frodshem, Hill, 2004]. Заметим, что отечественным генетиком А.С. Серебровским (1939) было высказано положение, обозначенное им как противоречие «единства бесконечного числа признаков и конечного числа генов», нашедшее, спустя более полувека, развитие в геномных исследованиях человека и обсуждение проектов «Феном человека» [Freimer, Sabat-ti, 2003] и «Феном мыши» [Paigen, Eppig, 2000]. «Важное различие между геномом и феномом состоит в том, что в то время как геном ограничен (приблизительно 3 млрд. пар оснований у человека), феном – нет (его предел за-висит от того, как далеко мы хотим двигаться)» - эта мысль, сформулирован-ная K. Paigen и J.T. Eppig (2000) тождественна положению А.С. Серебровского (1939). Подмеченное сходство взглядов классика генетики XX века и со-временных исследователей генома человека на генофенотипические взаимо-отношения [Пузырев, 2001] является, по нашему мнению, обоснованием перспективности высказываемых и ранее гипотез о том, что клинически различные группы (нозологии) заболеваний человека могут контролироваться общим набором генов подверженности [Becker et al., 1998].
С позиции изучения вклада «общих» генов в развитие различных болезней особую актуальность приобретает исследование системы генов метаболизма ксенобиотиков, поскольку ферментами этой системы осуществляется метаболизм не только большинства разнообразных по химической структуре экзогенных молекул, но и многочисленных эндогенных веществ, например, медиаторов воспаления. Система ферментов метаболизма ксенобиотиков представляет собой сформировавшийся в процессе эволюции механизм адаптации организма к воздействию токсичных экзогенных и эндогенных веществ. Предполагается, что различия в скорости деградации различных субстратов ферментами метаболизма могут лежать в основе неодинаковой восприимчивости к ряду заболеваний. Изучению участия генов этой системы в развитии онкопатологии, эндометриоза, бронхиальной астмы, хронической обструктивной болезни легких, инфекционных заболеваний посвящены многие работы отечественных и зарубежных авторов [Lin et al., 1998; Иващенко и др., 2001; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004]. Очевидно, что генетические различия в регуляции, экспрессии и активности генов ферментов биотрансформации ксенобиотиков являются решающими факторами в развитии болезни и позволяют рассматривать ее как важное звено в этиологии и патогенезе этих заболеваний.
Особое внимание исследователей привлекает участие ферментативной системы метаболизма в биотрансформации лекарственных препаратов [Nebert, 1997]. Изучение полиморфизма генов этой системы в различных популяциях, обусловливающего существование индивидуальных особенностей метаболизма лекарственных препаратов, проявляющихся различиями в эффективности терапии и наличием многообразных побочных эффектов медикаментозной нагрузки, являются достаточно перспективными в практическом применении.
Представляется перспективным проведение сравнительного анализа участия белков ферментов метаболизма ксенобиотиков в возникновении и развитии заболеваний, которые с одной стороны, часто сочетаются друг с другом у одного индивидуума (синтропии), с другой – редко или совсем не встречаются вместе (дистропии).
Туберкулез (ТБ) и бронхиальная астма (БА), являющиеся частой патологией народонаселения, по-видимому, относятся к дистропным заболеваниям. Так, эпидемиологическая парадигма свидетельствует о том, что риск раз-вития атопической БА и ее различных клинических проявлений в течение жизни намного ниже у индивидов, перенесших ТБ в детском возрасте [Von Hertzen et al., 1999, Shirakawa et al., 1997]. Тем не менее, показано, что при БА и ТБ имеет место общая генетическая основа (гены системы HLA, интерлейкинов и их рецепторных антагонистов и др.), обусловленная функциональной значимостью продуктов экспрессии этих генов в инфекционно-аллергическом процессе [Sandford et al., 1996; Greenwod et al., 2000; Bellamy, 2000; Sengler et al., 2002].
Таким образом, изучение роли полиморфных вариантов генов системы метаболизма в развитии БА и ТБ актуально и предполагает исследование их связи с клиническими особенностями течения заболеваний для понимания механизмов взаимодействия в процессе реализации наследственной информации на уровне целостного организма.
Цель работы: Провести сравнительный анализ значения полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза легких, оценить их роль в формировании клинических проявлений данных заболеваний у жителей города Томска.
Задачи исследования:
1. Изучить распространенность частот полиморфных вариантов генов ферментов метаболизма ксенобиотиков (CYP2C19, CYP2E1, GSTT1, GSTM1 и GSTP1) в выборке здоровых индивидов.
2. Оценить связь полиморфизмов исследуемых генов с атопической бронхиальной астмой и туберкулезом легких.
3. Изучить связь полиморфных вариантов, включенных в исследование генов, с клиническими особенностями течения бронхиальной астмы и туберкулеза легких, а также с патогенетически значимыми для этих заболеваний качественными и количественными признаками.
4. Провести сравнительный анализ роли полиморфных вариантов генов системы метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза.
Научная новизна:
Получены новые знания о роли генов ферментов биотрансформации ксенобиотиков (GSTT1, GSTM1, GSTP1, CYP2E1, CYP2C19) в развитии бронхиальной астмы и туберкулеза легких у жителей города Томска. Впервые проведена сравнительная оценка значимости исследуемых полиморфных вариантов генов системы метаболизма в развитии бронхолегочных патологий (на примере бронхиальной астмы и туберкулеза). Выявлены ассоциации полиморфизма генов GSTM1 (делеция) и CYP2E1 (7632T>A) с развитием бронхиальной астмы, а GSTP1 (313A>G) – с туберкулезом. Изучено влияние полиморфных вариантов генов системы метаболизма на развитие различных клинических особенностей течения заболеваний. Впервые проведена сравни-тельная оценка относительного риска в зависимости от комбинаций генотипов исследуемых генов для развития бронхиальной астмы и туберкулеза. Установлена роль генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2C19, CYP2E1) в детерминации изменчивости количественных, патогенетически значимых для заболеваний признаков. Показана связь полиморфного варианта 313A>G гена GSTP1 с изменчивостью уровня аланинаминотрансферазы у больных туберкулезом легких во время лечения антимикобактериальными препаратами.
Практическая значимость:
Полученные результаты исследования могут быть положены в основу разработки скрининговых программ по выявлению лиц с повышенным риском развития бронхиальной астмы и туберкулеза. Сведения о связи полиморфных вариантов генов ферментов метаболизма ксенобиотиков с изменчивостью показателей печеночной функции могут быть учтены при проведении профилактических мероприятий с целью предотвращения проявлений гепатотоксичности во время противотуберкулезной терапии. Материалы работы могут быть использованы в учебно-методическом процессе на биологических и медицинских факультетах ВУЗов. Полученная информация о полиморфизме генов ферментов биотрансформации ксенобиотиков у русских жителей города Томска может быть использована при проведении генетико-эпидемиологических исследований широко распространенных заболеваний.
Положения, выносимые на защиту:
1. Генетическими маркерами подверженности к бронхиальной астме могут быть генотип Т/А (полиморфизм 7632Т>А) гена CYP2E1 и «нулевой» генотип делеционного полиморфизма гена GSTM1.
2. У жителей города Томска генотип G/G гена GSTP1 (полиморфизм 313A>G) снижает риск развития туберкулеза.
3. Фактором генетической предрасположенности к бронхиальной астме является «нулевой» генотип гена GSTM1 как в сочетании с генотипом GSTT1+, так и в комбинации с гетерозиготным генотипом гена CYP2E1 (полиморфизм 7632Т>А).
4. «Нулевой» генотип гена GSTM1 и генотип *1/*1 гена CYP2C19 оказывают влияние на формирование клинических фенотипов бронхиальной астмы, определяющихся такими показателями как: уровень общего иммуноглобулина Е в сыворотке крови и форсированная жизненная емкость легких.
5. Изменчивость признаков, характеризующих особенности клинического течения туберкулеза (уровень эритроцитов и аланинаминотрансферазы), определяется полиморфными вариантами генов CYP2C19 (681G>A) и GSTP1 (313A>G) системы метаболизма ксенобиотиков.
Апробация работы:
Основные результаты исследования по теме диссертационной работы доложены и обсуждены на межлабораторных научных семинарах ГУ НИИ медицинской генетики ТНЦ СО РАМН (Томск, 2002, 2003); VI, VII научных конференциях «Генетика человека и патология» (Томск, 2002, 2004); IV Международном конгрессе молодых ученых «Науки о человеке» (Томск, 2003); V съезде Российского общества медицинских генетиков (Уфа, 2005).
Ферментативная система метаболизма ксенобиотиков является практически универсальным механизмом, поддерживающим внутренний баланс и способствующим сохранности здоровья организма человека. Существовавшая изначально для метаболизма эндогенных субстратов, система эволюционировала, адаптируясь к техногенному загрязнению окружающей среды. В её функционировании задействованы уникальные по своим свойствам ферменты: гемопротеид – цитохром Р450, низкомолекулярный трипептид - глутатион и др. С помощью целых семейств этих ферментов с одинаковой каталитической активностью и различной субстратной специфичностью метаболизируются сотни самых разных по химическому составу соединений. Одним из важнейших свойств системы метаболизма является индукция – активация транскрипции гена в присутствии субстрата. Тканеспецифичная экспрессия различных изоформ метаболизма определяет ее адаптацию к структурно-функциональной организации той или иной системы организма. Наибольшая экспрессия ферментов в печени обеспечивает наиболее активное участие этого органа в метаболизме ксенобиотиков. В совокупности все ферменты, участвующие в деградации молекул ксенобиотиков, функционируют как единый, четко скоординированный комплекс. Поэтому отклонение их функции неизменно приводит к вредным для организма человека последствиям. Это обстоятельство подтверждают многочисленные исследования о функционировании системы метаболизма при различных воздействиях окружающей среды и патологических состояниях [Lin et al., 1998; Иващенко и др., 2000; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004].
Согласно современным представлениям БА и ТБ относятся к группе дистропных болезней. Однако многочисленные проведенные исследования поиска генетической компоненты подверженности к этим заболеваниям показали ряд «общих» генов, белковые продукты которых задействованы на всех этапах патогенеза. С этой точки зрения целесообразным и перспективным представлялся сравнительный анализ полиморфных вариантов генов системы метаболизма ксенобиотиков, поскольку кодируемые ими ферменты задействованы в деградации эндогенных субстратов, а именно многочисленных медиаторов воспаления (простагландинов, лейкотриенов и т. д.), что легло в основу настоящего исследования.
Ряд работ показал связь генов ферментов метаболизма ксенобиотиков с развитием БА и её клиническими проявлениями в различных популяциях [Luszawaka-Kutrzela, 1999; Ляхович и др., 2000, 2002; Fryer et al., 2000; Иващенко и др., 2001; Gawronska-Szklarz et al., 2001; Вавилин и др., 2002; Gilliand et al., 2002; Сафронова и др., 2003; Brasch-Andersen et al., 2004; Tamer et al., 2004; Carroll, 2005]. Однако, учитывая значительные этнические различия в полиморфизме генов этой системы, существует противоречивая информация об их значимости для развития заболевания.
При оценке роли полиморфизма генов метаболизма ксенобиотиков для развития БА у жителей г. Томска показана ассоциация полиморфизма генов ферментов как I-й – CYP2E1, так и II фазы – GSTM1 с заболеванием.
Для носителей делеции гена GSTM1, приводящей к утрате активности соответствующего фермента, существует возможность дисбаланса процессов детоксикации экзогенных и эндогенных веществ, что повышает для них в два раза риск развития заболевания БА по сравнению с индивидами, имеющими функциональный генотип. Следует отметить, что подобные данные были получены во многих исследованиях, как для европеоидных, так и для монголоидных популяций [Вавилин и др., 2002; Ляхович и др., 2000; Zhang et al., 2004]. Можно предполагать, что эта ассоциация является важным следствием множественности биологических функций глутатионовых S-трансфераз и обусловлена их участием в метаболизме эндогенных медиаторов воспаления (простагландинов Н2, E2, F2a, лейкотриена С4). Однако интересно, что в про-явлении тяжести заболевания не отмечена значимость этого гена, а у пациентов с легкой степенью тяжести преобладал делеционный генотип гена GSTT1. Тяжесть БА определяется многими факторами (пол, возраст начала, отягощенная наследственность, предшествующее лечение, сопутствующие аллергические заболевания), и в настоящее время нет четких представлений о формировании клинического полиморфизма заболевания [Огородова и др., 2002]. В данном случае, можно лишь предполагать, что при наличии отчетливо неблагоприятного генотипа, развитие патологического процесса может сдерживаться присутствием в геноме индивида генов, контролирующих вы-работку белковых структур, которые препятствуют развитию более тяжелой степени течения БА.
В ходе исследования были получены данные о связи ТБ с другими генами системы метаболизма. Так, в отношении инфекционного заболевания показана протективная роль полиморфиза 313A>G гена GSTP1 фермента II-й фазы метаболизма. Эта ассоциация объясняется с позиции высокой экспрессии глутатионовой S-трансферазы π1 в легких, защищающих таким образом человека на пути воздействия на организм токсичных агентов окружающей среды (например, химических соединений, содержащихся в табачном дыме и выхлопных газах), которые можно отнести к факторам, провоцирующим развитие ТБ.
Анализ полиморфизма исследуемых генов в формировании и степени выраженности клинических проявлений ТБ показал, что последствия возможной активации CYP2C19 нарушают оксидантное равновесие при уже развившемся заболевании, а развитие окислительного стресса способствует усилению процессов деструкции в легочной ткани.
Несомненно, единственной причиной развития ТБ является инфицирование организма M. tuberculosis. Однако дальнейшая судьба возбудителя болезни зависит от многих факторов, которые в совокупности определяют полиморфизм клинических форм заболевания. Так, показаны различия между группами больных с ТБ внутригрудных лимфоузлов и инфильтративным ТБ для полиморфизма 313A>G гена GSTP1, играющего роль в подверженности к заболеванию.
В исследованиях дизайна «случай-контроль» особую важность приобретает использование для анализа ассоциаций генетических факторов с заболеванием семейного материала, позволяющего проследить наследование ал-лелей, связанных с болезнью. В ходе данного исследования показано пред-почтительное наследование аллеля 313G гена GSTP1 больными БА потомка-ми от гетерозиготных родителей.
Важная информация о взаимодействии ферментов системы метаболизма двух фаз для оценки их вклада в подверженность к заболеваниям была получена при анализе носителей определенных сочетаний генотипов. Отме-чена комбинация генотипов генов ферментов II фазы метаболизма GSTM1 и GSTP1, оказывающая протективную роль как в отношении развития БА, так и ТБ. В большинстве случаев протективная роль комбинаций генотипов в от-ношении БА показана при сочетании аллелей генов, которые обеспечивают полноценное функционирование соответствующих ферментов системы метаболизма обеих фаз. Выявлена комбинация генотипов полиморфных вариантов генов GSTM1 и CYP2E1, предрасполагающая к развитию БА, но оказывающая протективную роль в отношении ТБ. Среди всех проанализированных комбинаций полиморфных вариантов генов не показано ни одного сочетания, имеющего патогенетическую значимость в развитии ТБ. Полученные данные свидетельствуют, что эффекты комбинаций определенных генотипов генов ФМК различны в развитии БА и ТБ.
Следующим этапом исследования было изучение связи исследуемых полиморфных вариантов генов с количественными лабораторными показателями, характеризующими особенности течения различных по этиологии и патогенезу заболеваний. Учитывая варьирование количественных признаков в зависимости от пола, оценка вклада полиморфизма генов системы биотрансформации ксенобиотиков была проведена отдельно для мужчин и женщин и показала участие генов ферментов как I-й так и II-й фаз метаболизма. Так отмечена связь гена CYP2C19 с изменчивостью IgE у женщин и GSTM1 – с показателем форсированной жизненной емкости легких, которые относятся к важным количественным характеристикам проявлений БА. Оценка гемато-логических показателей крови у мужчин, больных ТБ выявила связь поли-морфизма гена CYP2C19 с изменчивостью уровня эритроцитов в периферической крови. Неодинаковый характер ассоциаций генов ферментов метаболизма с количественными признаками у мужчин и женщин позволяет пред-положить, что та часть структуры наследственной компоненты предрасположенности к заболеваниям, которая связана с полиморфизмом этих генов, не-одинакова у представителей разного пола, что выражается в дифференциальной частоте многих болезней у мужчин и женщин в одной популяции.
Особую ценность для практического здравоохранения приобретают результаты настоящего исследования в свете участия генов ферментов метаболизма ксенобиотиков в формировании гепатотоксичных реакций на противотуберкулезную терапию. Выявленная ассоциация повышения активности аланинаминотрансферазы после лечения антимикобактериальными препаратами с полиморфным вариантом гена GSTP1 в дальнейшем может использоваться для разработки комплекса профилактических мер по предотвращению побочных реакций от химиотерапии ТБ.
В целом, полученные результаты свидетельствуют, что наличие определенных генотипов и их комбинаций генов ферментов метаболизма ксенобиотиков может оказывать существенное влияние на предрасположенность и формирование клинического фенотипа БА и ТБ. Сравнительный анализ участия генов ферментов биотрансформации ксенобиотиков в развитии БА и ТБ позволил раскрыть некоторые генетические аспекты этих дистропных заболеваний. В ходе исследования показана дифференциация генов, задействованных в формировании клинического фенотипа заболеваний: гены GSTM1 и CYP2E1 связаны с БА и ее клиническими проявлениями, а GSTP1 - с развитием ТБ. Из исследуемых полиморфных вариантов генов ферментативной системы биотрансформации отмечен «общий» ген – CYP2C19, ассоциированный с изменчивостью признаков, характеризующих некоторые особенности течения этих двух заболеваний. Одним из предполагаемых функциональных механизмов, лежащих в основе полученных ассоциаций, может быть участие белковых продуктов соответствующих генов в метаболизме эндо-генных ксенобиотиков, в том числе многочисленных медиаторов воспали-тельных реакций. Актуальность продолжения исследований сравнительного характера клинически различных групп заболеваний не вызывает сомнения, поскольку полученные результаты позволяют не только приблизиться к пониманию молекулярно-генетических основ подверженности к ним, но и в дальнейшем открывают перспективы профилактики их развития.
1. Авербах М. М. Иммунология и иммунопатология туберкулеза. — М.: Медицина, 1976. - 311 с.
2. Аксенович Т.И Статистические методы генетического анализа признаков человека: Учеб. Пособие / Новосиб. гос. ун-т. Новосибирск, 2001. - 128 с.
3. Афанасьева И.С., Спицин В.А. Наследственный полиморфизм глутатион S-трансферазы печени человека в норме и при алкогольном гепатите // Генетика. – 1990. – Т. 26 (7). – С. 1309-1314.
4. Баранов В.С., Баранова Е.В., Иващенко Т.Э. и др. Геном человека и гены «предрасположенности». (Введение в предиктивную медицину).- СПб.: Интермедика, 2000.- 272 с.
5. Бикмаева А.Р., Сибиряк С.В., Хуснутдинова Э.К. Инсерционный поли-морфизм гена CYP2E1 у больных инфильтративным туберкулезом легких в популяциях республики Башкортостан // Молекулярная биология. – 2004. – Т. 38. -№ 2. – С. 239-243.
6. Бикмаева А.Р., Сибиряк С.В., Хуснутдинова Э.К. Инсерционный полиморфизм гена CYP2E1 у больных инфильтративным туберкулезом легких и в популяциях республики Башкортостан // Молекулярная биология. – 2004. – Т. 38. - № 2. – С. 239-243.
7. Бочков Н.П., Захаров А.Ф., Иванов В.И. Медицинская гентика. – М.: Медицина, 1984. – 366 с.
8. Вейр Б. Анализ генетических данных: Пер. с англ. – М.: Мир, 1995. – 400 с.
9. Вавилин В. А., Макарова С. И., Ляхович В, В. и др. Ассоциация полиморфных ферментов биотрансформации ксенобиотиков с предрасположенностью к бронхиальной астме у детей с наследственной отягощенностью и без таковой // Генетика. – 2002. – Т. 38. - № 4. – С. 539-545.
10. Гинтер Е.К. Популяционная генетика и медицина // Вестник РАМН. – 2001. - № 10. – С. 25-31.
11. Гланц С. Медико-биологическая статистика. – М.: Практика, 1998. — 459 с.
12. Глебович О. В. Диагностическая ценность исследования пунктата грудины при туберкулезе легких. - Ленинград., 1951. – 132 с.
13. Гончарова И. А., Фрейдин М. Б., Дунаева Л. Е., Белобородова Е. В., Белобородова Э. И., Пузырев В. П. Анализ связи полиморфизма Ile50Val гена рецептора интерлейкина-4 (IL4RA) с хроническим вирусным гепатитом // Молеклярная биология. – 2005. – Т. 3. - № 3. – С. 379-384.
14. Гриппи М.А. Патофизиология легких. – М.: Восточная книжная компания, 1997. – 344 с.
15. Гусев В.А., Даниловская Е.В. Роль активных форм кислорода в патогенезе пневмокониозов // Вопр. мед. химии. – 1987. - № 5. – С. 9-15.
16. Животовский Л. А. Интеграция полигенных систем в популяциях. Проблемы анализа комплекса признаков. – М.: Наука, 1984. – 183 с.
17. Земскова З. С., Дорожкова И. Р. Скрыто протекающая туберкулезная инфекция. – М.: Медицина, 1984. – 224 с.
18. Иващенко Т. Э., Сиделева О. Г., Петрова М. А. и др. Генетические фак-торы предрасположенности к бронхиальной астме // Генетика. – 2001. – Т. 37., № 1. – С. 107-111.
19. Ильина Н.И. Эпидемия аллергии – в чем причины? // Консилиум-медикум. – 2001. – Приложение. – С. 3-5.
20. Кан Е. Л. Изменения в системе крови и их диагностическое значение // Руководство по туберкулезу органов дыхания. - 1972. — С. 116—128.
21. Крынецкий Е.Ю. Полиморфизм ферментов, участвующих в метаболизме лекарственных средств: структура генов и ферментативная активность // Молекулярная биология. – 1996. – Т.31 Выпуск 1. – 33-42.
22. Кулинский В.И. Обезвреживание ксенобиотиков // Cоросовский образовательный журнал. – 1999. - № 1. – С. 8-12.
23. Лакин Г. Ф. Биометрия: Учеб. Пособие для биол. Спец. ВУЗов – 4-е изд., перераб. И доп. – М.: Высш. шк., 1990. – 352 с.
24. Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. – М.: Медицина, 1984. – 160 с.
25. Литвинов В. И., Чуканова В. П., Маленко А. Ф. и др. Проблемы иммуногенетики болезней легких // Сборник трудов Центр. научн-исслед. ин-та туберкулеза. – 1983. – Т. 37. – С. 16-19.
26. Литвинов В. И., Чуканова В. П., Поспелов Л. Е. и др. Роль иммуногене-тических факторов при легочной патологии // Всесоюзный съезд фтизиаторов, 10-й. – Харьков, 1986. – С. 71-71.
27. Ляхович В. В., Вавилин В. А., Макарова С. И. и др. Роль ферментов биотрансформации ксенобиотиков в предрасположенности к бронхиальной астме и формировании особенностей ее клинического фенотипа // Вест-ник РАМН. – 2000. - № 12. – С. 36-41.
28. Ляхович В. В., Гавалов С. М., Вавилин В.А. и др. Полиморфизм генов ферментов биотрансформации ксенобиотиков и особенности бронхиаль-ной астмы у детей // Пульмонология. – 2002. – Т. 12. - № 2. – С. 31-38.
29. Ляхович В.В., Цырлов И.Б. Индукция ферментов метаболизма ксенобиотиков - Новосибирск: Наука, 1981. – 242 с.
30. Маниатис Т., Фрич Э., Сэмбук Дж. Методы генетической инженерии. Молекулярное клонирование. – М.: Мир, 1984. – 480 с.
31. Меньшиков В. В. Лабораторные методы исследования в клинике. - М.: Медицина, 1987. - 350 с.
32. Меньщикова Е.Б., Зенков Н.К. Метаболическая активность гранулоцитов при хронических неспецифических заболеваниях легких // Терапевт. арх. – 1991. - № 11. – С 85-85.
33. Милосердова А. И. Система крови при первичном туберкулезе и туберкулезном менингите у детей и ее изменение при химиотерапии: Автореф. дисс. … док-ра. мед. наук. - Кишенев, 1958. – 48 с.
34. Национальная программа «Бронхиальная астма у детей. Стратегия лече-ния и профилактика»: - М., 1997 г. – 93 с.
35. Огородова Л.М., Петровская Ю.А., Камалтынова Е.М. с соавт. Тяжелая бронхиальная астма у детей: факторы риска, течение // 2002. – С. 68-71.
36. Поспелов Л. Е., Серова Л. Д., Маленко А. Ф. и др. Изучение связи распределения антигенов локуса HLA-DR и туберкулеза в различных попу-ляциях // Пробл. туб. – 1987. - № 10. – С. 54-56.
37. Проблемы наследственности при болезнях легких / Под ред. А. Г. Хо-менко. – М.: Медицина, 1990. – 240 с.
38. Пузырев В. П., Фрейдин М. Б., Рудко А. А., Стрелис А. К., Колоколова О. В. Анализ взаимосвязи полиморфных маркеров генов NRAMP1 и IL12p40 и туберкулеза // Медицинская генетика. – 2002. – Т. 1. - № 1. С. 44-46.
39. Пузырев В. П., Фрейдин М. Б., Огородова Л. М., Кобякова О. С. Взаимо-связь полиморфных вариантов генов интерлейкинов и их рецепторов с атопической бронхиальной астмой // Медицинская генетика. – 2002. – Т. 1. - № 2. – С. 86-92.
40. Пузырев В. П., Фрейдин М. Б., Рудко А. А., Стрелис А. К., Колоколова О. В. Полиморфизм генов-кандидатов подверженности к туберкулезу у славянского населения Сибири: пилотное исследование // Молекулярная биология. – 2002. – Т. 36. - № 5. – С. 788-791.
41. Пузырев В. П., Степанов В. А., Назаренко С. А. Геномные исследования наследственной патологии и генетическое разнообразие сибирских популяций // Молекулярная биология. – 2004. – Т. 38. - № 1. – С. 129-138.
42. Пузырев В.П. Генетика мультифакториальных заболеваний: между прошлым и будущим // Медицинская генетика. – 2003. – Т. 2. № 12. – С. 498-508.
43. Пузырев В. П. Вольности генома и медицинская патогенетика // Бюл. Сиб. Медицины. – 2002. - Т. 2. – С. 16-29.
44. Пузырев В. П. Феном и гены-синтропии // Генетика человека и патология: Сб. науч. трудов / Под ред. В. П. Пузырева. – Вып. 7. – Томск: Печатная мануфактура, 2004. – 296 с.
45. Пузырев В.П., Никитин Д.Ю., Напалкова О.В. Ген NRAMP1: структура, функция и инфекционные болезни человека // Молекулярная генетика, микробиология и вирусология. – 2002. – №3. – С.34-40.
46. Пузырев В.П., Степанов В.А. Патологическая анатомия генома // Новосибирск: «Наука». – 1997. – 224 с.
47. Рабухин А. Е. Туберкулез органов дыхания у взрослых. - М.: Медицина, 1976. - 328 с.
48. Радзинский А. Г. Гематологическая характеристика свежих неослажненных случаев туберкулеза легких при антибактериальной терапии // Врачебное дело. - 1961. - № 4.- С. 61-66.
49. Райс Р. Х., Гуляева Л. Ф. Биологические эффекты токсических соединений: курс лекций / Новосиб. Гос. Ун-т. – Новосибирск. – 2003. – 208 с.
50. Российская Научно-практическая программа «Бронхиальная астма у детей: диагностика, лечение и профилактика» Москва, 2004. – 46 с.
51. Рудко А.А., Ондар Э.А., Фрейдин М.Б., Пузырев В.П. Генетика подверженности к туберкулезу у тувинцев // Вестник этнической медицины. – 2004. - Т.1. - №1. – С. 17-21.
52. Сафронова О. Г., Вавилин В. А., Ляпунова А. А. Взаимосвязь между полиморфизмом гена GSTP1 и бронхиальной астмой и атопическим дерматитом // Бюл. Эксп. Биол. Мед. – 2003. – Т. 136. - № 1. – С. 73-75.
49. Сибиряк С. В. Цитокины как регуляторы цитохром Р-450 –зависимых монооксигеназ Теоретические и прикладные аспекты // Цитокины и воспаление. – 2003. - №2. – Р. 27-31.
53. Состояние противотуберкулезной помощи неселению Сибирского и Дальневосточного Федеральных округов по итогам работы в 2003 г. / Под общей редакцией Заслуженного врача Российской Федерации д.м.н., профессора В. А. Краснова. – Новосибирск. – 2004. – 44 с.
54. Тиунов Л.А., Головенко Н.Я., Галкин Б.Н., Баринов В.А. Биохимические механизмы токсичности окислов азота // Успехи соврем. биологии. – 1991. – Т. 111, вып. 5. – С. 738-750.
55. Фогель Ф., Мотульски А. Генетика человека. В 3-х т./ Пер. с англ. – М.: Мир, 1990.
56. Фрейдин М.Б., Кобякова О.С., Огородова Л.М. с соавт. Наследуемость уровня общего интерлейкина-5 и полиморфизм С-703Т гена IL5 у больных бронхиальной астмой // Бюлл. Эксп. Биол. Мед. – 2000. – Т. 129 (прил. 1). – С. 50-52.
57. Фрейдин М.Б., Огородова Л.М., Пузырев В.П. Вклад полиморфизма генов интерлейкинов в изменчивость количественных факторов риска атопической бронхиальной астмы // Медицинская генетика. – 2003. - Т.2. -№ 3. – С. 130-135.
58. Хоменко А. Г., Литвинов В. И., Чуканова В. П. и др. Антигены комплекса HLA у больных туберкулезом и здоровых лиц в различных популяциях // Иммунология. – 1985. - № 1. – С. 22-24.
59. Цинзерлинг А.В., Цинзерлинг В.А. Патологическая анатомия // Учебник для педиатрических факультетов медицинских вузов. – Сотис. Санкт-Петербург. – 1996. – 369 с.
60. Чучалин А.Г. Генетические аспекты бронхиальной астмы // Пульмунология. – 1999. - № 12. – Р. 6-10.
61. Шайхаев Г.О. Туберкулез проблема не только социальная… // Природа. – 1999. - № 10. – С. 8-12.
62. Шангареева З.А., Викторова Т.В., Насыров Х.М. и др. Анализ полиморфизма генов, участвующих в метаболизме этанола, у лиц с алкогольной болезнью печени // Медицинская генетики. – 2003. - Т. 2. – № 11. – С. 485-490.
63. Шарафисламова Э.Ф., Викторова Т.В., Хуснутдинова Э.К. Полиморфизм генов глутатион S-трансфераз М1 и Р1 у больных эндометриозом из Башкортостана // Медицинская генетика. – 2003. - Т. 2. – №. 3. – С. 136-140.
64. Шмелев Н. А. Цитологический анализ крови и его значение при туберкулезе. - М., 1959. – 140 с.
65. Adjers K., Pessi T., Karjalainen J. et al. Epistatic effect of IL1A and IL4RA genes on the risk of atopy // J. Allergy Clin. Immunol. – 2004. – V. 113. - № 3. – P. 445-7.
66. Al-Arif L., Affronti L. F., Goldstein R. Predposition a la tuberculose et anti-genes HLA dans une population noire de Washington // Bull. Union int. con-tre Tuberc. – 1979. – V. 54. - № 2. – P. 151-159.
67. Alexandrie A.K., Ingelman-sundberg M., Seidegaard J. et al Genetic suscepti-bility to lung cancer: a study of host factors in relation to age of onset and his-tological cancer types // Carcinogenesis (Lond.). – 1994. – V. 15. – P. 1785-1790.
68. Anderson G. G., Cookson W. O. C. M. Recent advances in the genetics of al-lergy and asthma // Mol. Med. Today. - 1999. – V. 5. – P. 264-273.
69. Anttila S., Luostarinen L., Hirvonen A. et al. Pulmonary expression of gluta-thione S-transferase M3 in lung cancer patients: assotiation with GSTM1 po-lymorphism, smoking, and asbestos exposure // Cancer Res. – 1995. - V. 55.– P. 3305-3309.
70. Arai K.I., Lee F., Miyajima A. et al. Cytokines co-ordinators of immune and inflammatory responses // Ann. Rev. Biochem. – 1990. – V. 59. – P. 783-802.
71. Awasthi S. S., Srivastava F. K., Ahmad F. et al. Interaction of glutathione S-transferase-pi with ethacrynic acid and its glutathionic conjugate // Biochem. Biophys. Acta. – 1993. – V. 1164. – P. 173-178.
72. Baldini M., Lohman I.C., Halonen M et al. A Polymorphism in the 5’ flanking region of the CD14 levels and with total serum immunoglobulin E // Am. J. Respir. Cell Mol. Biol. – 1999. – V. 20. – P. 976 -983.
73. Bartsch H., Nair U., Risch A. et al. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers // Cancer Epidemiology, Biomarkers and Prevention. – 2000. – V. 9. – P. 3-28.
74. Beckett G.J., Hayes J.D. Glutathione S-transferases: biomedical applications // Adv. Clin. Chem. – 1993. – V. 30. – P. 281-380.
75. Bellamy R. Identifyng genetic susceptibility factors for tuberculosis in African: a combined approach using a candidate gene study and a genome-wide screen // Clinical Science. – 2000. – V. 98. – P. 245-250.
76. Bellamy R., Ruwende C., Corra T. et al. Variation in the NRAMP1 gene and susceptibility to tuberculosis in West Africans // The New England Journal of Medicine. – 1998. – V. 338. - № 10. – P. 640-644.
77. Bertz R. J., Granneman G. R. Use of in vitro and in vivo date to estimate the likelihood of metabolic pharmacokinetic interactions // Clin Pharmacokinet. – 1997. – V. 32. – P. 210-258.
78. Board P.G., Webb G.C., Coggan M. Isolation of cDNA clone and localization of the human glutathione S-transferase 3 on chromosome bands 11q13 and 12q13-14 // Ann. Hum. Genet. – 1989. – V. 53. – P. 205-213.
79. Bornman L., Campbell S. J., Fielding K. et al. Vitamin D receptor polymor-phisms and susceptibility to tuberculosis in West Africa: a case-control and family study // J. Jnfect. Dis. – 2004. - V. 190. - № 9. – P. 1631-1641.
80. Brasch-Andersen C, Christiansen L, Tan Q. Possible gene dosage effect of glutathione-S-transferases on atopic asthma: using real-time PCR for quantifi-cation of GSTM1 and GSTT1 gene copy numbers // Hum Mutat. – 2004. – V.24. - № 3. – Р. 208-214.
81. Brockmoller J., Cascorbi I., Kerb R. Combined analysis of inherited polymor-phisms in arylamine N-acetyltransferase 2, glutathione S-transferase M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modula-tors of bladder cancer risk // Cancer Res. – 1996. – V. 56. – P. 3915-3925.
82. Burchard E. G., Silverman E. K., Rosenwasser L. J. et al. Assotiation between a sequence variant in the IL4 promoter and FEV(1) in asthma // Am. J. Res-pir. Crit. Care Med. – 1999. - № 160. – P. 919-922.
83. Cannone-Hergaux F., Gruendheid S. et al The NRAMP1 protein and its role resistence to infection and makrophage funktion // Proc. Amer. Physicians. – 1998. – V. 111. - № 4. – P. 283-289.
84. Carroll W.D., Lenney W., Child F. et al. Maternal glutathione S-transferase GSTP1 genotype is a specific predictor of phenotype in children with asthma // Pediatr Allergy Immunol.- 2005. - V.1. - № 16. – P. 32-39.
85. Carter C.O. Polygenic inheritance in man // Br. Med. Bull. – 1996. – V. 25. – P. 52-57.
86. Cervino A. C. L., Lakiss S., Sow O. et al. Allelic assotiation between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry // Ann. Hum. Genet. – 2000. – V. 64. – P. 507-512.
87. Chen H., Sandler D.P., Taylor J.A. et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect // The lancet. – V. 347. – 1996. – P. 295-297.
88. Chung K.F., Barnes P.J. Cytokines in asthma // Thorax. – 1999. – V. 54. – P. 825-857.
89. Cristina E. Mapp MD, Anthony A.et al. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates // Envi-ronmental and Occupational Disorders. – 2002.
90. Crump C., Chen C., Appelbaum F.R. et al. Glutathione S-transferase theta 1 gene deletion and risk of acute myeloid leukemia // Cancer Epidemiology, Biomarkers Prevention. – V. 9. – 2000. – P. 457-460.
91. Cytochrome P450 [Электронный ресурс]. – Режим доступа: http://drnelson.utmem.edu/Cytochrome P450.html/
92. Daniels S.E., Bhattacharrya B., James A. et al. A genome-wide search for quantitative trait loci underlying asthma. // Nature. – 1996. – V. 383. – P. 247-250.
93. De Long J.L., Chang T.M., Whang-Peng J. et al. The human liver glutathione S-transferase gene superfamily: expression and chromosome mapping of an Hb subunit cDNA // Nucleic. Acid Res. – 1988. – V. 16. – P.8541-8554.
94. De Morais S. M. F, Wilkinson G. R., Blaisdell J. et al. The major genetic de-fect responsible for the polymorphism of S-mephenytoin metabolism in hu-man // J. Biol. Chem.-1994.- V. 269.- №22. - P. 15419-15422.
95. Delfino R.J., Sinha R., Smith S. et al., Breast cancer, heterocyclic aromatic amines from meat and N-acetyltransferase 2 genotype // Carcinogenesis. – 2000. – V. 21. – P. 607-615.
96. Denison M.S. Whitlock J.P.Jr. Xenobiotic-inducible transcription of cytoch-rome P450 genes // J. Biol. Chem. - 1995. – V. 270. – P. 18175-18178.
97. Dickinson D.S., Bailey W.C., Hirschowihz B.I. et al. Risk factors for isiniazid induced liver dysfunction // J. Clin Gastroenterol. – 1981. – V. 3. – P. 271-279.
98. Directory of P450-containing systems [Электронный ресурс]. – Режим доступа: http://www.icgeb.trieste.it/~p450srv/