Введение 3
1. Теоретические сведения 8
1.1. EMD-разложение 8
1.2. Динамические системы 11
1.2.1. Классификация динамических систем. Хаотические системы 12
1.3. Реконструкция динамической системы по временному ряду 14
1.3.1. Временная задержка (лаг) 15
1.3.2. Размерность вложения 17
1.4. Корреляционная размерность 18
1.5. Показатели Ляпунова и локальные показатели разбегания (ЛПР) .. 20
1.5.1. Показатели Ляпунова 20
1.5.2. Локальные показатели разбегания 25
1.5.2.1. Нейросетевой метод вычисления спектров ЛПР 25
1.5.2.2. Критерии отбора нейросетей в комитет 26
1.5.2.3. Применение регрессионного анализа и алгоритм отбора регрессий
для оценки ЛИР 27
2. Компьютерные вычисления и результаты 31
2.1. Предобработка данных 31
2.2. Построение корреляционной суммы, корреляционной размерности и
проверка насыщения корреляционной размерности 34
2.3. Вычисление нейросетевых спектров ЛИР 43
2.3.1. Сумма первых удалённых мод и очищенные от первых мод
данные 43
2.3.2. Неочищенные данные 50
2.3.3. Суррогатный ряд 52
3. Выводы 55
Список литературы 56
Благодарности 60
Большое число современных научных задач сводится к необходимости описания и классификации того или иного процесса. При этом исследователь обыкновенно располагает лишь эмпирическими данными, которые являются единственной имеющейся реализацией исследуемого процесса на конечном временном отрезке. Таким образом, необходимость раскрыть общие принципы работы изучаемой системы встречает препятствие в виде ограниченности и неполноты имеющихся данных об этой системе. На помощь приходят методы теории сложности, позволяющие не только количественно, но и качественно интерпретировать данные различной природы.
Широкое распространение в последнее время получили методы нелинейной динамики. С их помощью можно выявить наличие детерминированной компоненты в изучаемой динамической системе. Исходя из факта наличия или отсутствия детерминированной динамики, можно попытаться сделать выводы о природе исследуемого процесса, и, если повезет, отнести его к одной из следующих групп: периодические, квазипериодические, случайные и хаотические процессы. Однако, подавляющее большинство процессов, окружающих нас, являются так или иначе понимаемой суперпозицией указанных выше процессов. Умение выделить отдельные "чистые" составляющие является одной из наиболее актуальных задач анализа временных рядов, которая, несмотря на многочисленные исследования, до сих пор окончательно не решена.
Настоящая работа посвящена исследованию некоторых аспектов финансовых временных рядов. Согласно классической гипотезе эффективного рынка (EfficientMarketHypothesis, EMH), движение цены есть случайное блуждание. Иными словами, логарифмы приращения цены могут быть смоделированы с помощью белого шума - некоррелированных случайных величин, распределённых по закону Гаусса. Из этого следует, что финансовые временные ряды порождаются случайными процессами, и возможность предсказания для них отсутствует. В настоящем исследовании выдвигается гипотеза, что динамика финансовых рынков не является абсолютно случайной, а определяется также и детерминированной хаотической составляющей. Количественной мерой хаоса в динамических системах традиционно является старший показатель Ляпунова, но далеко не всегда его можно вычислить с приемлемой погрешностью. Поэтому в данном исследовании используется сравнительно новая методика, которая базируется на вычислении спектров локальных показателей разбегания (ЛПР) близких траекторий на реконструированном аттракторе [30] с помощью комитета искусственных нейронных сетей.
Целью настоящей работы является определение структуры исследуемых финансовых временных рядов, более конкретно - выявление детерминированной компоненты и ответ на вопрос, является ли эта компонента хаотической.
Поставленные задачи были таковы:
• предварительная обработка данных;
• выделение с помощью EMD-алгоритма (Empirical Mode Decomposition) компонент финансовых временных рядов, относящихся к разным типам процессов;
• определение оптимальных параметров реконструкции лагового пространства выделенных EMD-компонент;
• построение корреляционных суммы и корреляционных размерностей (реализовано в среде Matlab) реконструированных аттракторов выделенных EMD-компонент;
• вычисление методами нейросетевых технологий спектров локальных показателей разбегания на реконструированных аттракторах - характеристики, которая является аналогом старшего ляпуновского показателя выделенных EMD-компонент;
• анализ локальных показателей разбегания выделенных EMD-
компонент с целью детектирования хаотической компоненты в финансовых временных рядах.
Исходя из полученных результатов, можно сделать несколько важных выводов. Во-первых, EMD-разложение логарифмических доходностей финансовых временных рядов высокой частоты нарезки хорошо подходит в качестве фильтра исследуемых данных. Оно даёт возможность выделить и исключить из данных шумовую компоненту. Требует дальнейшего исследования вопрос о соотношении амплитуд первых удаленных мод и амплитуды оставшегося ряда. Во-вторых, исходя из вида спектров распределения локальных показателей разбегания, рассчитанных с помощью комитета нейронных сетей, и средних значений ЛПР для каждой сети, можно сделать выводы о том, что доходности исследуемых в работе финансовых инструментов имеют хаотическую компоненту. Полученные результаты подтверждает проведённый тест на суррогатных данных. Как следствие, можно говорить о том, что традиционная идея моделирования доходностей финансовых временных рядов случайными процессами (белым шумом, фрактальными шумами, приращениями стабильных случайных процессов Леви и др.) требует более пристального внимания и изучения.