Тип работы:
Предмет:
Язык работы:


Микроэкстракционное концентрирование адреналина для его последующего определения в пробах мочи

Работа №140143

Тип работы

Магистерская диссертация

Предмет

химия

Объем работы77
Год сдачи2022
Стоимость4900 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
32
Не подходит работа?

Узнай цену на написание


Введение 5
Глава 1. Литературный обзор 6
1.1 Мицеллообразование и мицеллы 6
1.2. Супрамолекулярные растворители 12
1.3 Алкилполиглюкозиды 28
1.4 Способы пробоподготовки и определения адреналина в биологических
жидкостях 31
Заключение 37
Глава 2. Экспериментальная часть 39
2.1 Оборудование 39
2.2 Реактивы и материалы 40
2.3 Приготовление и хранение растворов 41
2.4 Пробоотбор и подготовка проб 42
2.5 Изучение физико-химических параметров и состава супрамолекулярных
растворителей 42
Глава 3. Результаты и их обсуждение 44
3.1 Теоретические и экспериментальные предпосылки 44
3.2 Выбор метода анализа и способа детектирования 49
3.3 Оптимизация проведения дериватизации 51
3.3.1 Время и температура термостатирования 51
3.3.2 Концентрация раствора о-фенилендиамина 52
3.4. Оптимизация микроэкстракционного извлечения 53
3.4.1 Природа алкилполиглюкозида 53
3.4.2 Природа и объем кислоты 53
3.4.3 Концентрация ПАВ 55
3.4.4 Природа и концентрация соли 55
3.4.5 Объем раствора деривата 56
3.5 Исследование состава фаз 57
3.6 Разработанный способ определения адреналина в моче 58
3.7 Аналитические характеристики разработанного способа 59
3.8 Анализ реальных объектов 60
Список достижений по итогам исследования 64
Выводы 65
Благодарности 66
Список литературы 67


Для определения веществ в пробах со сложной матрицей в схему анализа вводится этап пробоподготовки. Зачастую он заключается в выделении и концентрировании целевого аналита посредством экстракции. Классические подходы к жидкостно-жидкостной экстракции подразумевают применение органических растворителей для выделения гидрофобных аналитов из водных проб. Однако они не всегда эффективны и безопасны для окружающей среды. Поэтому в настоящее время разрабатывается ряд новых подходов, направленных на миниатюризацию, автоматизацию процедур анализа и поиск экологически безопасных экстрагентов. Среди таких экстрагентов выделяют ионные жидкости, глубокие эвтектические растворители, растворители с переключаемой гидрофильностью и супрамолекулярные растворители. Последние получают из растворов поверхностно¬активных веществ (ПАВ), способных к образованию мицелл и солюбилизации аналитов. Альтернативой применяемым ранее ПАВ являются биоразлагаемые неионогенные ПАВ - алкилполиглюкозиды.
Цель работы: изучение возможностей применения алкилполиглюкозидов и образуемых ими супрамолекулярных растворителей для микроэкстракционного выделения аналитов из биологических жидкостей .
Задачи:
1. Изучить ряд алкилполиглюкозидов и найти условия выделения фазы супрамолекулярного растворителя;
2. Исследовать физико-химические свойства и состав полученных супрамолекулярных растворителей, а также их экстракционные возможности на примере определения адреналина в пробах мочи;
3. Разработать способ микроэкстракционного извлечения адреналина для его последующего определения методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с флуориметрическим детектированием;
4. Проверить разработанный способ на реальных пробах и подтвердить его правильность методом «введено-найдено» и референтным методом.


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


1. Предложены новые супрамолекулярные растворители на основе алкилполиглюкозидов и карбоновых кислот. Изучены их физико-химические свойства, определены условия разделения фаз и предложен механизм процесса коацервации.
2. Изучены и оптимизированы условия дериватизации аналита и микроэкстракционного выделения деривата. Достигнута степень извлечения 95%.
3. Разработан способ определения адреналина в моче с применением супрамолекулярных растворителей на основе алкилполиглюкозида и гептановой кислоты.
4. Предел обнаружения составил 10 нг/л, относительное стандартное отклонение менее 7 %.
5. Предложенный способ может быть рекомендован для введения в клиническую практику, как неинвазивный способ анализа.



[1] К. Холмберг, Б. Йёнссон, Б. Кронберг, and Б. Линдман, Поверхностно-активные вещества и полимеры в водных растворах. М.: БИНОМ. Лаборатория знаний, 2015.
[2] S. Sharma, S. Kori, and A. Parmar, “Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices,” Food Chem., vol. 185, pp. 284-288, 2015, doi: 10.1016/j.foodchem.2015.03.106.
[3] R. Hosseinzadeh, K. Khorsandi, and S. Hemmaty, “Study of the Effect of Surfactants on Extraction and Determination of Polyphenolic Compounds and Antioxidant Capacity of Fruits Extracts,” PLoS One, vol. 8, no. 3, pp. 1-7, 2013, doi: 10.1371/journal.pone.0057353.
[4] J. Eastoe, J. Dalton, P. Rogueda, D. Sharpe, J. Dong, and J. R. P. Webster, “Interfacial properties of a catanionic surfactant,” Langmuir, vol. 12, no. 11, pp. 2706-2711,
1996, doi: 10.1021/la960123q.
[5] I. Ullah, A. Shah, A. Badshah, A. Shah, N. A. Shah, and R. Tabor, “Surface, aggregation properties and antimicrobial activity of four novel thiourea-based non-ionic surfactants,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 464, pp. 104-109, 2015, doi: 10.1016/j.colsurfa.2014.10.002.
[6] E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton- X100 micelles,” J. Chem. Soc. - Faraday Trans., vol. 93, no. 23, pp. 4131-4136,
1997, doi: 10.1039/a704990k.
[7] P. C. Griffiths, N. Hirst, A. Paul, S. M. King, R. K. Heenan, and R. Farleyt, “Effect of ethanol on the interaction between poly(vinylpyrrolidone) and sodium dodecyl sulfate,” Langmuir, vol. 20, no. 16, pp. 6904-6913, 2004, doi: 10.1021/la049348o.
[8] D. C. Steytler, D. L. Sargeant, B. H. Robinson, J. Eastoe, and R. K. Heenan, “Lamellar Aggregates in the L2 Phase of a Nonionic Silicone Surfactant (L77-OH),” Langmuir, vol. 10, no. 7, pp. 2213-2218, 1994, doi: 10.1021/la00019a030.
[9] F. J. Ruiz, S. Rubio, and D. Perez-Bendito, “Tetrabutylammonium-induced coacervation in vesicular solutions of alkyl carboxylic acids for the extraction of organic compounds,” Anal. Chem., vol. 78, no. 20, pp. 7229-7239, 2006, doi: 10.1021/ac060427+.
[10] D. Blankschtein, G. M. Thurston, and G. B. Benedek, “Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions,” J. Chem. Phys., vol. 85, no. 12, pp. 7268-7288, 1986, doi: 10.1063/1.451365.
[11] D. C. Steytler, T. R. Jenta, B. H. Robinson, J. Eastoe, and R. K. Heenan, “Structure of reversed micelles formed by metal salts of bis(ethylhexyl) phosphoric acid,” Langmuir, vol. 12, no. 6, pp. 1483-1489, 1996, doi: 10.1021/la950669x.
[12] S. Das, R. P. Mandal, B. Mandal, and S. De, “Enhanced Hydrodynamic Radius of AOT/n-heptane/Water Reverse Micellar System Through Altered Electrostatic Interactions and Molecular Self-Assemblies,” J. Fluoresc., vol. 31, no. 5, pp. 1475-1488, 2021, doi: 10.1007/s10895-021-02760-x.
[13] I. Benito, M. A. Garcia, C. Monge, J. M. Saz, and M. L. Marina, “Spectrophotometric and conductimetric determination of the critical micellar concentration of sodium dodecyl sulfate and cetyltrimethylammonium bromide micellar systems modified by alcohols and salts,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 125, no. 2-3, pp. 221-224, 1997, doi: 10.1016/S0927-7757(97)00014-9.
[14] M. S. Alam, S. K. Rajendran, J. H. Mondal, E. Linda, and A. M. Siddiq, “The micellar and thermophysical studies of a surfactant, sodium dodecyl sulfate with a hydrotrope, 3-Nitrobenzene sulfonic acid sodium salt,” J. Mol. Liq., vol. 315, 2020, doi: 10.1016/j.molliq.2020.113815.
[15] S. A. Khan and A. M. Asiri, “Physicochemical and Critical Micelle Concentration (CMC) of Cationic (CATB) and Anionic (SDS) Surfactants with Environmentally Benign Blue Emitting TTQC Dye,” J. Fluoresc., vol. 25, no. 6, pp. 1595-1599, 2015, doi: 10.1007/s10895-015-1621-2.
[16] R. Nagarajan, “Solubilization in aqueous solutions of amphiphiles,” Curr. Opin.
Colloid Interface Sci., vol. 1, no. 3, pp. 391-401, 1996, doi: 10.1016/s1359-
0294(96)80139-7.
[17] L. L. Schramm, E. N. Stasiuk, and D. G. Marangoni, “Surfactants and their applications,” Annu. Reports Prog. Chem. - Sect. C, vol. 99, no. 2, pp. 3-48, 2003, doi: 10.1039/B208499F.
[18] A. Melnyk, L. Wolska, and J. Namiesnik, “Coacervative extraction as a green technique for sample preparation for the analysis of organic compounds,” J. Chromatogr. A, vol. 1339, pp. 1-12, 2014, doi: 10.1016/j.chroma.2014.02.082.
[19] O. E. P. Smith, L. J. Waters, W. Small, and S. Mellor, “CMC determination using isothermal titration calorimetry for five industrially significant non-ionic surfactants,” Colloids Surfaces B Biointerfaces, vol. 211, no. November 2021, p. 112320, 2022, doi: 10.1016/j.colsurfb.2022.112320.
[20] M. S. Alam, A. M. Siddiq, V. Mythili, M. Priyadharshini, N. Kamely, and A. B. Mandal, “Effect of organic additives and temperature on the micellization of cationic surfactant cetyltrimethylammonium chloride: Evaluation of thermodynamics,” J. Mol. Liq., vol. 199, pp. 511-517, 2014, doi: 10.1016/j.molliq.2014.09.026.
[21] J. Parikh, J. Rathore, D. Bhatt, and M. Desai, “Clouding Behavior and
Thermodynamic Study of Nonionic Surfactants in Presence of Additives,” J. Dispers. Sci. Technol., vol. 34, no. 10, pp. 1392-1398, 2013, doi:
10.1080/01932691.2012.749183.
[22] A. Ballesteros-Gomez, S. Rubio, and D. Perez-Bendito, “Potential of supramolecular solvents for the extraction of contaminants in liquid foods,” J. Chromatogr. A, vol. 1216, no. 3, pp. 530-539, 2009, doi: 10.1016/j.chroma.2008.06.029.
[23] F. H. Quina and W. L. Hinze, “Surfactant-mediated cloud point extractions: An environmentally benign alternative separation approach,” Ind. Eng. Chem. Res., vol. 38, no. 11, pp. 4150-4168, 1999, doi: 10.1021/ie980389n.
[24] L. Zhou, H. Shi, Z. Li, and C. He, “Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications,” Macromol. Rapid Commun., vol. 41, no. 21, pp. 1-20, 2020, doi: 10.1002/marc.202000149.
[25] W. Zhao and Y. Wang, “Coacervation with surfactants: From single-chain surfactants to gemini surfactants,” Adv. Colloid Interface Sci., vol. 239, pp. 199-212, 2017, doi: 10.1016/j.cis.2016.04.005.
[26] S. Rubio, “Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead,” Analytical and Bioanalytical Chemistry. 2020, doi: 10.1007/s00216-020-02559-y.
[27] M. Wang and Y. Wang, “Development of surfactant coacervation in aqueous solution,” Soft Matter, vol. 1, pp. 1-285, 2007, doi: 10.1002/9783527617050.
[28] B. S. Bhadane and T. J. Patil, “Micellization studies on binary mixture of methionine
with Polyoxyethylene (10) Cetyl Ether (Brij-56) and Polyoxyethylene (20) Cetyl Ether (Brij-58),” E-Journal Chem., vol. 7, no. 4, pp. 1578-1583, 2010, doi:
10.1155/2010/150425.
[29] M. Corti, C. Minero, and V. Degiorgio, “Cloud point transition in nonionic micellar solutions,” J. Phys. Chem., vol. 88, no. 2, pp. 309-317, 1984, doi: 10.1007/978-1-4899-2280-9.
[30] V. T. Patil, “Impact of Alkaline Earth Metal salts on the Thermodynamics of Clouding Behavior of Tween 80,” vol. 6, no. 8, pp. 46-48, 2016.
[31] I. Cohen, C. F. Hiskey, and G. Oster, “CRITICAL PHENOMENA IN AQUEOUS SOLUTIONS OF LONG-CHAIN QUATERNARY AMMONIUM SALTS,” J ColloidSci, vol. 9, pp. 243-253, 1954.
[32] B. W. BARRY and G. M. T. GRAY, “Micelle Formation and Coacervation in Mixtures of Alkyltrimethylammonium Bromides with Di and Trihydroxy Bile Salts B.,” J. Colloid Interface Sci., vol. 52, no. 2, pp. 327-339, 1975.
[33] G. I. Mukhayer and S. . Davis, “Interactions between large organic ions of opposite and unequal charge,” J. Colloid Interface Sci., vol. 66, no. 2, pp. 335-344, 1978, doi: 10.1016/0021-9797(78)90312-0.
[34] H. Hoffmann, C. Thunig, U. Munkert, H. W. Meyer, and W. Richter, “From Vesicles to the L3 (Sponge) Phase in Alkyldimethylamine Oxide/Heptanol Systems,” Langmuir, vol. 8, no. 11, pp. 2629-2638, 1992, doi: 10.1021/la00047a011.
[35] I. Casero, D. Sicilia, S. Rubio, and D. Perez-Bendito, “An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds,” Anal. Chem., vol. 71, no. 20, pp. 4519-4526, 1999, doi: 10.1021/ac990106g.
[36] S. Kori, “Cloud point extraction coupled with back extraction: a green methodology in analytical chemistry,” Forensic Sciences Research, vol. 6, no. 1. pp. 19-33, 2021, doi: 10.1080/20961790.2019.1643567.
[37] A. Melnyk, J. Namiesnik, and L. Wolska, “Theory and recent applications of coacervate-based extraction techniques,” TrAC - Trends Anal. Chem., vol. 71, pp. 282-292, 2015, doi: 10.1016/j.trac.2015.03.013.
[38] Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., and Gorbunova M.V., “Liquid-liquid extraction of organic compounds into a single drop of the extractant: Overview of reviews,” J. Anal. Chem., vol. 76, no. 8, pp. 946-959, 2021.
[39] В. А. Дорощук, Н. А. Гонта, and С. А. Куличенко, “Определение торасемида в
биологических жидкостях методом высокоэффективной жидкостной хроматографии с предварительным фенол-индуцированным
мицеллярноэкстракционным концентрированием,” Журнал Хроматограф1чного товариства,vol. 3, no. 4, pp. 34-42, 2011.
[40] H. Watanabe and H. Tanaka, “A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol,” Talanta, vol. 25, no. 10, pp. 585-589, 1978, doi: 10.1016/0039-9140(78)80151-9.
[41] R. Ferrer, J. L. Beltran, and J. Guiteras, “Use of cloud point extraction methodology
for the determination of PAHs priority pollutants in water samples by high- performance liquid chromatography with fluorescence detection and wavelength programming,” Anal. Chim. Acta, vol. 330, no. 2-3, pp. 199-206, 1996, doi:
10.1016/0003-2670(96)00176-6.
[42] R. P. H. Nikolajsen and A. M. Hansen, “Analytical methods for determining urinary catecholamines in healthy subjects,” Anal. Chim. Acta, vol. 449, no. 1-2, pp. 1-15, 2001, doi: 10.1016/S0003-2670(01)01358-7.
[43] P. R. Aranda, R. A. Gil, S. Moyano, I. E. De Vito, and L. D. Martinez, “Cloud point
extraction of mercury with PONPE 7.5 prior to its determination in biological samples by ETAAS,” Talanta, vol. 75, no. 1, pp. 307-311, 2008, doi:
10.1016/j.talanta.2007.11.012.
[44] E. K. P. Aleologos, S. S. G. Iannakopoulos, P. D. Z. Ygoura, and M. G. K.
Ontominas, “Acid-Induced Phase Separation of Anionic Surfactants for the Extraction of 1 , 4-Dichlorobenzene from Honey Prior to Liquid Chromatography,” pp. 5236¬5240, 2006.
[45] A. Ballesteros-Gomez, M. D. Sicilia, and S. Rubio, “Supramolecular solvents in the extraction of organic compounds. A review,” Analytica Chimica Acta, vol. 677, no. 2. Elsevier, pp. 108-130, Sep. 16, 2010, doi: 10.1016/j.aca.2010.07.027.
[46] N. Gissawong, S. Boonchiangma, S. Mukdasai, and S. Srijaranai, “Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines,” Talanta, vol. 200, no. November 2018, pp. 203-211, 2019, doi: 10.1016/j.talanta.2019.03.049.
[47] M. R. Hadjmohammadi, M. H. Fatemi, and T. Taneh, “Coacervative extraction of phthalates from water and their determination by high performance liquid chromatography,” J. Iran. Chem. Soc., vol. 8, no. 1, pp. 100-106, 2011, doi: 10.1007/BF03246206.
[48] S. Garcia-Fonseca, A. Ballesteros-Gomez, and S. Rubio, “Restricted access supramolecular solvents for sample treatment in enzyme-linked immuno-sorbent assay of mycotoxins in food,” Anal. Chim. Acta, vol. 935, pp. 129-135, 2016, doi: 10.1016/j.aca.2016.06.042.
[49] N. Luque, A. Ballesteros-Gomez, S. van Leeuwen, and S. Rubio, “A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation,” J. Chromatogr. A, vol. 1235, pp. 84-91, 2012, doi: 10.1016/j.chroma.2012.02.055.
[50] P. Bogdanova, C. Vakh, and A. Bulatov, “A surfactant-mediated microextraction of synthetic dyes from solid-phase food samples into the primary amine-based supramolecular solvent,” Food Chem., vol. 380, no. July 2021, p. 131812, 2022, doi: 10.1016/j.foodchem.2021.131812.
[51] S. M. Sorouraddin, M. A. Farajzadeh, and T. Okhravi, “Development of a new method for extraction and preconcentration of cadmium and zinc ions in edible oils based on heat-induced homogeneous liquid-liquid microextraction,” J. Iran. Chem. Soc., vol. 16, no. 7, pp. 1537-1543, 2019, doi: 10.1007/s13738-019-01631-4.
[52] K. Cherkashina, S. Lebedinets, A. Pochivalov, A. Lezov, C. Vakh, and A. Bulatov, “Homogeneous liquid-liquid microextraction based on primary amine phase separation: A novel approach for sample pretreatment,” Anal. Chim. Acta, vol. 1074, pp. 117-122, 2019, doi: 10.1016/j.aca.2019.04.070.
[53] P. Bogdanova, A. Pochivalov, C. Vakh, and A. Bulatov, “Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides,” Talanta, vol. 216, no. January, p. 120992, 2020, doi: 10.1016/j.talanta.2020.120992.
[54] A. Ballesteros-Gomez and S. Rubio, “Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants,” Anal. Chem., vol. 84, no. 1, pp. 342-349, 2012, doi: 10.1021/ac2026207.
[55] F. Accioni, D. Garcia-Gomez, E. Girela, and S. Rubio, “SUPRAS extraction approach for matrix-independent determination of amphetamine-type stimulants by LC-
MS/MS,” Talanta, vol. 182, no. February, pp. 574-582, 2018, doi:
10.1016/j.talanta.2018.02.039.
[56] L. Jinlei, A. Wurita, W. Xuejun, Y. Hongkun, G. Jie, and C. Liqin, “Supramolecular
solvent (SUPRASs) extraction method for detecting benzodiazepines and zolpidem in human urine and blood using gas chromatography tandem mass spectrometry,” Leg. Med., vol. 48, no. October 2020, p. 101822, 2021, doi:
10.1016/j.legalmed.2020.101822.
[57] J. F. Liu, R. Liu, Y. G. Yin, and G. Bin Jiang, “Triton X-114 based cloud point extraction: A thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase,” Chem. Commun., no. 12, pp. 1514-1516, 2009, doi: 10.1039/b821124h.
[58] J. B. Chao et al., “Speciation analysis of silver nanoparticles and silver ions in
antibacterial products and environmental waters via cloud point extraction-based separation,” Anal. Chem., vol. 83, no. 17, pp. 6875-6882, 2011, doi:
10.1021/ac201086a.
[59] G. G. Ying, “Fate, behavior and effects of surfactants and their degradation products
in the environment,” Environ. Int., vol. 32, no. 3, pp. 417-431, 2006, doi:
10.1016/j.envint.2005.07.004.
[60] G. S. K. Hill, W. von Rybinski, “Alkyl Polyglycosides,” 2003, doi: 10.1201/9780203911730.ch2.
[61] R. Rastogi, “Fate of Alkyl Polyglucosides in the Environment,” J. Cosmet. Sci, vol. 72, no. February, pp. 91-98, 2021.
[62] D. Balzer; and H. Luders, “Nonionic Surfactants: Alkyl Polyglucosides,” J. Am. Chem. Soc., vol. 123, no. 4, pp. 2000-2001, 2001.
[63] G. Czichocki, H. Fiedler, K. Haage, H. Much, and S. Weidner, “Characterization of alkyl polyglycosides by both reversed-phase and normal-phase modes of high- performance liquid chromatography,” J. Chromatogr. A, vol. 943, no. 2, pp. 241-250, 2002, doi: 10.1016/S0021-9673(01)01459-5.
[64] D. Terescenco et al., “The alkyl polyglucoside/fatty alcohol ratio effect on the formation of liquid crystal phases in binary systems,” J. Mol. Liq., vol. 253, pp. 45-52, 2018, doi: 10.1016/j.molliq.2017.12.149.
[65] D. Balzer, “Cloud Point Phenomena in the Phase Behavior of Alkyl Polyglucosides in
Water,” Langmuir, vol. 9, no. 12, pp. 3375-3384, 1993, doi: 10.1021/la00036a009.
[66] D. Geetha and R. Tyagi, “Alkyl Poly Glucosides (APGs) Surfactants and Their Properties: A Review,” Tenside, Surfactants, Deterg., vol. 49, no. 5, pp. 417-427, 2012, doi: 10.3139/113.110212.
[67] D. Balzer, “Alkyl polyglucosides, their Physico-chemical Properties and their Uses,” Tenside Surfactants Deterg., vol. 28, no. 6, pp. 419-425, 1991.
[68] V. Dhapte and P. Mehta, “Advances in hydrotropic solutions: An updated review,” St. Petersbg. Polytech. Univ. J. Phys. Math., vol. 1, no. 4, pp. 424-435, 2015, doi: 10.1016/j.spjpm.2015.12.006.
[69] A. Zgola-Grzeskowiak, T. Grzeskowiak, M. Franska, A. Rz^sa, and Z. Lukaszewski, “Investigations on the biodegradation of alkylpolyglucosides by means of liquid chromatography-electrospray mass spectrometry,” Biodegradation, vol. 19, no. 5, pp. 635-642, 2008, doi: 10.1007/s10532-007-9168-9.
[70] A. BENNUN, Ed., Adrenaline. Production, Role In Disease and Stress, Effects on the Mind and Body, Nova Scien. New York, 2014.
[71] Э. Ш. Матлина and В. В. Меньшиков, Адреналин и норадреналин. 1964.
[72] “National Center for Biotechnology Information. PubChem Compound Summary for CID 5816, Epinephrine. https://pubchem.ncbi.nlm.nih.gov/compound/Epinephrine. Accessed Mar. 21, 2022.”
[73] U. Lundberg, “Methods and applications of stress research,” Technol. Heal. Care, vol. 3, no. 1, pp. 3-9, 1995, doi: 10.3233/THC-1995-3102.
[74] J. K. Sluiter, M. H. W. Frings-Dresen, T. F. Meijman, and A. J. Van Der Beek, “Reactivity and recovery from different types of work measured by catecholamines and cortisol: A systematic literature overview,” Occup. Environ. Med., vol. 57, no. 5, pp. 298-315, 2000, doi: 10.1136/oem.57.5.298.
[75] J. G. Hardman, P. B. Limbird, and A. G. Gilman, Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 2006.
[76] D. Ratge, A. Gehrke, I. Melzner, and H. Wisser, “Free and Conjugated Catecholamines in Human Plasma During Physical Exercise,” Clin. Exp. Pharmacol. Physiol., vol. 13, no. 7, pp. 543-553, 1986, doi: 10.1111/j.1440-1681.1986.tb00937.x.
[77] N. T. Buu and O. Kuchel, “Dopamine-4-O-sulfate: A possible precursor of free
norepinephrine,” Can. J. Biochem., vol. 57, no. 9, pp. 1159-1162, 1979, doi:
10.1139/o79-149.
[78] Минестерство здравоохранения РФ, Государственная Фармакопея Российской Федерации,vol. III. Москва, 2018.
[79] Boos K.S. and B. Wilmers, “On-line Sample Processing and Analysis of Diol Compounds in Biological Fluids,” J. Chromatogr., vol. 456, pp. 93-104, 1988.
[80] T. Seki, Y. Yanagihara, and K. Noguchi, “Determination of free catecholamines in human urine by direct injection of urine into a liquid chromatographic column-switching system with fluorimetric detection,” J. Chromatogr. A, vol. 515, no. C, pp. 435-440, 1990, doi: 10.1016/S0021-9673(01)89338-9.
[81] R. Said, D. Robinet, C. Barbier, J. Sartre, and C. Huguet, “Fully automated high- performance liquid chromatographic assay for the analysis of free catecholamines in urine,” J. Chromatogr. B Biomed. Sci. Appl., vol. 530, no. C, pp. 11-18, 1990, doi: 10.1016/S0378-4347(00)82297-5.
[82] F. Boomsma, G. Alberts, F. A. J. van der Hoorn, A. J. Man in ’t Veld, and M. A. D. H. Schalekamp, “Simultaneous determination of free catecholamines and epinine and estimation of total epinine and dopamine in plasma and urine by high-performance liquid chromatography with fluorimetric detection,” J. Chromatogr. B Biomed. Sci. Appl., vol. 574, no. 1, pp. 109-117, 1992, doi: 10.1016/0378-4347(92)80104-X.
[83] T. Huang, J. Wall, and P. Kabra, “Imprived Solid-Phase Extraction and Liquid Chromatography with Electrochemical Detection of Urinary Catecholamines and 5-S- L-Cysteinyl-L-Dopa,” J. Chromatogr., vol. 452, pp. 409-418, 1988.
[84] B. Green, J. D. H. Cooper, and D. C. Turnell, “An automated method for the analysis
of urinary free catecholamines using asted and high-pressure liquid chromatography,” Ann. Clin. Biochem., vol. 26, no. 4, pp. 361-367, 1989, doi:
10.1177/000456328902600412.
[85] T. Soga and Y. Inoue, “Determination of catecholamines in urine and plasma by on¬
line sample pretreatment using an internal surface boronic acid gel,” J. Chromatogr. B Biomed. Sci. Appl., vol. 620, no. 2, pp. 175-181, 1993, doi: 10.1016/0378-
4347(93)80001-K.
[86] E. S. P. B. V, M. Chan, and S. Siu, “Simultaneous Quantitation of Catecholamines and o-Methylated Metabolites in Urine by Isocratic Ion-Pairing High-Performance Liquid Chromatography with Amperometric Detection,” J. Chromatogr., vol. 459, pp.
251-260, 1988.
[87] F. A. J. van der Hoorn, F. Boomsma, A. J. Man in ’t Veld, and M. A. D. H. Schalekamp, “Improved measurement of urinary catecholamines by liquid-liquid extraction, derivatization and high-performance liquid chromatography with fluorimetric detection,” J. Chromatogr. B Biomed. Sci. Appl., vol. 563, no. 2, pp. 348¬355, 1991, doi: 10.1016/0378-4347(91)80041-A.
[88] A. M. Hansen, J. Kristiansen, J. L. Nielsen, K. Byrialsen, and J. M. Christensen,
“Validation of a high performance liquid chromatography analysis for the determination of noradrenaline and adrenaline in human urine with an on-line sample purification,” Talanta, vol. 50, no. 2, pp. 367-379, 1999, doi: 10.1016/S0039-
9140(99)00029-6.
[89] J. Yang, G. Zhang, X. Cao, L. Sun, and Y. Ding, “Fluorimetric determination of
epinephrine with 2,3-diaminonaphthalene,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 53, no. 10, pp. 1671-1676, 1997, doi: 10.1016/S1386-
1425(97)00085-1.
[90] R. N. Goyal and B. Agrawal, “Ag ion irradiated based sensor for the electrochemical determination of epinephrine and 5-hydroxytryptamine in human biological fluids,” Anal. Chim. Acta, vol. 743, pp. 33-40, 2012, doi: 10.1016/j.aca.2012.06.053.
[91] M. Taleb, R. Ivanov, S. Bereznev, S. H. Kazemi, and I. Hussainova,
“Alumina/graphene/Cu hybrids as highly selective sensor for simultaneous
determination of epinephrine, acetaminophen and tryptophan in human urine,” J. Electroanal. Chem., vol. 823, no. March, pp. 184-192, 2018, doi:
10.1016/j.jelechem.2018.06.013.
[92] Л. А. Сидорова, А А, Карцова, “Хроматографическое и электрофоретическое определение катехоламинов, метанефринов и 3,4-дигидроксифенилаланина в моче и плазме крови Сидорова,” Сорбционные и хроматографические процессы, pp. 533-542, 2010.
[93] M. Peitzsch et al., “Simultaneous liquid chromatography tandem mass spectrometric determination of urinary free metanephrines and catecholamines, with comparisons of free and deconjugated metabolites,” Clin. Chim. Acta, vol. 418, pp. 50-58, 2013, doi: 10.1016/j.cca.2012.12.031.
[94] Y. Sakaguchi et al., “Selective liquid-chromatographic determination of native
fluorescent biogenic amines in human urine based on fluorous derivatization,” J. Chromatogr. A, vol. 1218, no. 33, pp. 5581-5586, 2011, doi:
10.1016/j.chroma.2011.05.076.
[95] P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin, and A. Bulatov, “Flow method
based on cloud point extraction for fluorometric determination of epinephrine in human urine,” Anal. Chim. Acta, vol. 911, pp. 69-74, 2016, doi:
10.1016/j.aca.2015.12.045.
[96] M. P. Llavero, S. Rubio, A. Gomez-Hens, and D. Perez-Bendito, “Improved
trihydroxyindole method for the simultaneous stopped-flow spectrofluorimetric determination of epinephrine and norepinephrine in urine,” Anal. Chim. Acta, vol. 229, no. C, pp. 27-33, 1990, doi: 10.1016/S0003-2670(00)85106-5.
[97] Y. Wada, I. Yamaguchi, M. Takahashi, H. Nakanishi, S. Mori, and N. K. Nishizawa, “Highly sensitive quantitative analysis of nicotianamine using LC/ESI-TOF-MS with an internal standard,” Biosci. Biotechnol. Biochem., vol. 71, no. 2, pp. 435-441, 2007, doi: 10.1271/bbb.60496.
[98] I. Pacheco-Fernandez, R. Gonzalez-Martin, F. A. e Silva, M. G. Freire, and V. Pino, “Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media - A review,” Anal. Chim. Acta, vol. 1143, pp. 225-249, 2021, doi: 10.1016/j.aca.2020.08.022.
[99] D. Kanashina, A. Pochivalov, I. Timofeeva, and A. Bulatov, “Mixed surfactant systems based on primary amine and medium-chain fatty acid: Micelle-mediated microextraction of pesticides followed by the GC-MS determination,” J. Mol. Liq., vol. 306, p. 112906, 2020, doi: 10.1016/j.molliq.2020.112906.
[100] J. Yang et al., “Fluorimetric determination of epinephrine with o-phenylenediamine,” Anal. Chim. Acta, vol. 363, no. 1, pp. 105-110, May 1998, doi: 10.1016/S0003- 2670(98)00017-8.


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2025 Cервис помощи студентам в выполнении работ