Тип работы:
Предмет:
Язык работы:


ВЭЖХ определение офлоксацина в моче с on-line микроэкстракционным концентрированием

Работа №138588

Тип работы

Дипломные работы, ВКР

Предмет

химия

Объем работы61
Год сдачи2016
Стоимость4260 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
18
Не подходит работа?

Узнай цену на написание


Введение
Глава 1. Обзор литературы
1.1 Гомогенная микроэкстракция и способы ее реализации
1.1.1 Гомогенная жидкостная микроэкстракция с высаливанием/
высахариванием экстрагента
1.1.2 Гомогенная жидкостная микроэкстракция с выделением фазы экстрагента
из трехкомпонентной системы путем высаливания или разбавления водой ..........13
1.1.3 Гомогенная жидкостная микроэкстракция, основанная на изменении
температуры системы
1.1.4 Гомогенная жидкостная микроэкстракция, основанная на изменении рН 15
1.2 Методы определения офлоксацина
Заключение.
Глава 2. Методика экспериментальных исследований
2.1 Оборудование
2.2 Реактивы и материалы
2.3 Приготовление растворов
2.4 Отбор и подготовка проб
Глава 3. ВЭЖХ определение офлоксацина в моче с on-line
микроэкстракционным концентрированием
3.1 Теоретические аспекты и предполагаемый механизм гомогенной жидкостной
микроэкстракции офлоксацина с разделением фаз углекислым газом....................32
3.2 Иллюстрация аналитических возможностей предложенного метода ...............33
3.3 Оптимизация параметров, влияющих на эффективность микроэкстракции ....34
3.3.1 Выбор метода анализа
3.3.2 Выбор оптимальных длин волн возбуждения и эмиссии
3.3.3 Выбор оптимальной подвижной фазы
3.3.4 Выбор оптимального экстрагента
3.3.5 Влияние объема экстрагента
3.3.6 Влияние объема раствора карбоната натрия
3.3.7 Влияние объема пробы
3.3.8 Влияние минеральной кислоты
3.3.9 Влияние рН раствора
3.3.10 Влияние концентраций растворов карбоната натрия и серной кислоты ..41
3.3.11 Влияние гидродинамических параметров
3.4 Мешающее влияние компонентов мочи
3.5 Аналитические характеристики методики
3.6 Проверка правильности методики референтным методом
Выводы
Благодарности
Список литературы

В настоящее время в экспериментальной и клинической медицине резко
возрос интерес к надежным методам исследования качественных и
количественных характеристик биологических жидкостей с целью ранней
диагностики различных патологических изменений в организме человека.
Постоянно возрастающее число клинических анализов требует разработки новых
автоматизированных и миниатюризированных подходов, которые позволяют
повысить не только надежность анализа, но и его производительность, а также
снизить трудозатраты и расходы реагентов.
Несмотря на стремительное совершенствование аналитического
оборудования, анализ биологических жидкостей требует проведения стадии
пробоподготовки, основным этапом которой является жидкостная или
твердофазная экстракция, обеспечивающая выделение и концентрирование
целевого аналита. Необходимость данной стадии анализа диктуется низкими
концентрациями аналита в пробах и/или наличием большого числа мешающих
компонентов сложной по составу матрицы.
Целью данной работы была разработка автоматизированной методики
ВЭЖХ определения офлоксацина в моче, включающей гомогенную микроэкстракцию.
Для достижения поставленной цели решались следующие задачи:
обосновать общую схему нового комбинированного микроэкстракционного
метода – гомогенной жидкостной микроэкстракции с разделением фаз углекислым
газом, оптимизировать условия микроэкстракционного выделения офлоксацина
для последующего ВЭЖХ определения, апробировать разработанную методику
на реальных объектах и подтвердить ее правильность референтным методом.

Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


1. Обоснована общая схема нового комбинированного
микроэкстракционного метода - гомогенной жидкостной микроэкстракции с
разделением фаз углекислым газом;
2. Оптимизированы основные параметры, влияющие на эффективность
микроэкстракции: тип экстрагента, рН микроэкстракции, тип минеральной
кислоты, используемой для разделения, концентрации и объемы реагентов и
пробы, а также условия элюирования аналита из хроматографической колонки;
3. Разработана автоматизированная методика ВЭЖХ определения
содержания офлоксацина в моче с on-line микроэкстракционным
концентрированием; предел обнаружения для офлоксацина составил 0,01 мкМ.
Время одного анализа – 20 минут;
4. Разработанная методика апробирована на реальных пробах мочи, а ее
правильность подтверждена флуориметрическим методом


1. Крылов В.А. и др. Жидкофазное микроэкстракционное
концентрирование примесей // Журнал аналитической химии. 2011. Т. 66, № 4. С.
341–360.
2. Namies J. The 12 principles of green analytical chemistry and the
SIGNIFICANCE mnemonic of green analytical practices // Trends Anal. Chem. 2013.
Vol. 50. P. 78–84.
3. Timofeeva I. et al. Stepwise injection potentiometric determination of caffeine
in saliva using single-drop microextraction combined with solvent exchange // Talanta.
2016. Vol. 150. P. 655–660.
4. Carasek E., Merib J. Membrane-based microextraction techniques in
analytical chemistry : A review // Anal. Chim. Acta, 2015. Vol. 880. P. 8–25.
5. Anthemidis A.N., Ioannou K.G. Recent developments in homogeneous and
dispersive liquid – liquid extraction for inorganic elements determination. A review //
Talanta. 2009. Vol. 80. P. 413–421.
6. Paleologos E.K., Giokas D.L., Karayannis M.I. Micelle-mediated separation
and cloud-point extraction // Trends Anal. Chem. 2005. Vol. 24, № 5. P. 426–436.
7. Ming-jie L.I. et al. Progress of Extraction Solvent Dispersion Strategies for
Dispersive Liquid-liquid Microextraction // Chinese J. Anal. Chem. 2015. Vol. 43, № 8.
P. 1231–1240.
8. Matkovich C.E. Salting-Out of Acetone from Water- Basis of a New Solvent
Extraction System // Anal. Chem. 1973. Vol. 45, № 11. P. 1915–1921.
9. Matkovich C.E., Christian G.D. Solvent Extraction of Metal Chelates into
Water-Immiscible Acetone // Anal. Chem. 1974. Vol. 46, № 1. P. 102–106.
10. Jain A., Gupta M., Verma K.K. Salting-out assisted liquid – liquid extraction
for the determination of biogenic amines in fruit juices and alcoholic beverages after
derivatization with 1-naphthylisothiocyanate and high performance liquid
chromatography // J. Chromatogr. A. 2015. Vol. 1422. P. 60–72.
11. Gure A. et al. Salting-out assisted liquid – liquid extraction combined with
capillary HPLC for the determination of sulfonylurea herbicides in environmental water
and banana juice samples // Talanta. 2014. Vol. 127. P. 51–58.
12. Razmara R.S., Daneshfar A., Sahrai R. Determination of methylene blue and50
sunset yellow in wastewater and food samples using salting-out assisted liquid – liquid
extraction // J. Ind. Eng. Chem. The Korean Society of Industrial and Engineering
Chemistry, 2011. Vol. 17, № 3. P. 533–536.
13. Liu J. et al. Miniaturized salting-out liquid – liquid extraction of sulfonamides
from different matrices // Anal. Chim. Acta. 2010. Vol. 679. P. 74–80.
14. Sereshti H., Khosraviani M., Amini-fazl M.S. Miniaturized salting-out liquid
– liquid extraction in a coupled-syringe system combined with HPLC – UV for
extraction and determination of sulfanilamide // Talanta. 2014. Vol. 121. P. 199–204.
15. Wang M., Cai Z., Xu L. Coupling of acetonitrile deproteinization and saltingout extraction with acetonitrile stacking in chiral capillary electrophoresis for the
determination of warfarin enantiomers // J. Chromatogr. A. 2011. Vol. 1218, № 26. P.
4045–4051.
16. Tsai W. et al. Determination of sulfonamides in swine muscle after salting-out
assisted liquid extraction with acetonitrile coupled with back-extraction by a water /
acetonitrile / dichloromethane ternary component system prior to high-performance
liquid chromatography // J. Chromatogr. A. 2010. Vol. 1217. P. 250–255.
17. Zhang K. et al. Multiresidue Pesticide Analysis of Agricultural Commodities
Using Acetonitrile Salt-Out Extraction , Dispersive Solid-Phase Sample Clean-Up , and
High-Performance Liquid Chromatography À Tandem Mass Spectrometry // J. Agric.
Food Chem. 2011. Vol. 59. P. 7636–7646.
18. Valente I.M., Gonc L.M., Rodrigues J.A. Another glimpse over the salting-out
assisted liquid – liquid extraction in acetonitrile / water mixtures // J. Chromatogr. A.
2013. Vol. 1308. P. 58–62.
19. Nagaosa Y., Sakata K. Salting-out extraction technique for pretreatment in the
liquid chromatographic determination of copper ( II ), aluminum ( III ), iron ( III ) and
manganese ( II ) in biological samples // Talanta. 1998. Vol. 46. P. 647–654.
20. Myasein F. et al. Rapid , simultaneous determination of lopinavir and ritonavir
in human plasma by stacking protein precipitations and salting-out assisted liquid /
liquid extraction , and ultrafast LC – MS / MS // Anal. Chim. Acta. 2009. Vol. 651. P.
112–116.
21. Sparidans R.W. et al. Liquid chromatography – tandem mass spectrometric
assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid –51
liquid extraction // J. Chromatogr. B. 2016. Vol. 1012. P. 118–123.
22. Ahmed S., Mahmoud A.M. A novel salting-out assisted extraction coupled
with HPLC- fl uores- cence detection for trace determination of vitamin K homologues
in human plasma // Talanta. 2015. Vol. 144. P. 480–487.
23. Hassan J., Bahrani S.H. Determination of atorvastatin in human serum by
salting out assisted solvent extraction and reversed-phase high-performance liquid
chromatography – UV detection // Arab. J. Chem. 2014. Vol. 7, № 1. P. 87–90.
24. Gao M. et al. Optimization of a phase separation based magnetic-stirring saltinduced liquid – liquid microextraction method for determination of fluoroquinolones in
food // Food Chem. 2015. Vol. 175. P. 181–188.
25. Wang H. et al. Integration of phase separation with ultrasound-assisted saltinduced liquid – liquid microextraction for analyzing the fluoroquinones in human body
fluids by liquid chromatography // J. Chromatogr. B. 2015. Vol. 985. P. 62–70.
26. Gupta M. et al. Salt-assisted liquid – liquid microextraction for the
determination of iodine in table salt by high-performance liquid chromatography-diode
array detection // Food Chem. 2011. Vol. 124, № 4. P. 1741–1746.
27. Fu H. et al. Salting-out extraction of carboxylic acids // Sep. Purif. Technol.
2015. Vol. 139. P. 36–42.
28. Chen J. et al. Extraction and purification of flavanone glycosides and
kaemferol glycosides from defatted Camellia oleifera seeds by salting-out using
hydrophilic isopropanol // Sep. Purif. Technol. 2009. Vol. 67. P. 31–37.
29. Chung N.H., Tabata M. Salting-out phase separation of the mixture of 2-
propanol and water for selective extraction of cobalt ( II ) in the presence of manganese (
II ), nickel ( II ), and copper ( II ) // Hydrometallurgy. 2004. Vol. 73. P. 81–89.
30. Xie X. et al. Extraction mechanism of sulfamethoxazole in water samples
using aqueous two-phase systems of poly (propylene glycol) and salt // Anal. Chim.
Acta. 2011. Vol. 687, № 1. P. 61–66.
31. Tabata M., Kumamoto M., Nishimoto J. Chemical Properties of WaterMiscible Solvents Separated and Their Application to Solvent Extraction // Anal. Sci.
1994. Vol. 10. P. 383–388.
32. Lundanes E. Quantification of Nerve Agent Biomarkers in Human Serum and
Urine // Anal. Chem. 2014. Vol. 86. P. 11833–11840.52
33. Pratiwi A.I. et al. Extraction of succinic acid by aqueous two-phase system
using alcohols / salts and ionic liquids / salts // Sep. Purif. Technol. 2015. Vol. 155. P.
127–132.
34. Majidi B., Shemirani F. Salt-assisted liquid-liquid microextraction of Cr (VI)
ion using an ionic liquid for preconcentration prior to its determination by flame atomic
absorption spectrometry // Microchim. Acta. 2012. Vol. 176. P. 143–151.
35. Ventura P.M. et al. Evaluation of Anion Influence on the Formation and
Extraction Capacity of Ionic-Liquid-Based Aqueous Biphasic Systems // J. Phys. Chem.
B. 2009. Vol. 113. P. 9304–9310.
36. Liu Q. et al. Partitioning Behavior of Penicillin G in Aqueous Two Phase
System Formed by Ionic Liquids and Phosphate Partitioning Behavior of Penicillin G in
// Sep. Sci. Technol. 2006. Vol. 41. P. 2849–2858.
37. He C. et al. Extraction of testosterone and epitestosterone in human urine
using aqueous two-phase systems of ionic liquid and salt // J. Chromatogr. A. 2005. Vol.
1082. P. 143–149.
38. Li S. et al. Ionic liquid-based aqueous two-phase system , a sample
pretreatment procedure prior to high-performance liquid chromatography of opium
alkaloids // J. Chromatogr. B. 2005. Vol. 826. P. 58–62.
39. Li C. et al. Extraction and mechanism investigation of trace roxithromycin in
real water samples by use of ionic liquid – salt aqueous two-phase system // Anal. Chim.
Acta. 2009. Vol. 653. P. 178–183.
40. Farajzadeh M.A. et al. Development of counter current salting-out
homogenous liquid – liquid extraction for isolation and preconcentration of some
pesticides from aqueous samples // Anal. Chim. Acta. 2015. Vol. 885. P. 122–131.
41. Ali M. et al. Development of a new extraction method based on counter
current salting-out homogenous liquid – liquid extraction followed by dispersive liquid –
liquid microextraction : Application for the extraction and preconcentration of widely
used pesticide // Talanta. 2016. Vol. 146. P. 772–779.
42. Akramipour R. et al. Combination of counter current salting-out homogenous
liquid – liquid extraction and dispersive liquid – liquid microextraction as a novel
microextraction of drugs in urine samples // J. Chromatogr. B. 2016. Vol. 1012. P. 162–
168.53
43. Mohamed A.I., Abdel-wadood H.M. Simultaneous determination of
dorzolomide and timolol in aqueous humor : A novel salting out liquid – liquid
microextraction combined with HPLC // Talanta. 2014. Vol. 130. P. 495–505.
44. Chen M. et al. Rapid determination of triclosan in personal care products
using new in-tube based ultrasound-assisted salt-induced liquid – liquid microextraction
coupled with high performance liquid chromatography-ultraviolet detection // Anal.
Chim. Acta. 2013. Vol. 767. P. 81–87.
45. Wang B. et al. Sugaring-out : A novel phase separation and extraction system
// Chem. Eng. Sci. 2008. Vol. 63. P. 2595–2600.
46. Feng H., Ezeji T., Blaschek H. Sugaring-Out Separation of Acetonitrile from
Its Aqueous Solution // Chem. Eng. Technol. 2008. Vol. 31, № 12. P. 1869–1874.
47. Yan L., Sun Y., Xiu Z. Sugaring-out Extraction Coupled with Fermentation of
Lactic Acid // Sep. Purif. Technol. 2016. Vol. 161. P. 152–158.
48. Zhang C. et al. Sugaring-out three-liquid-phase extraction and one-step
separation of Pt ( IV ), Pd ( II ) and Rh ( III ) // Sep. Purif. Technol. Elsevier B.V., 2012.
Vol. 87. P. 127–134.
49. Zhang J. et al. Sugaring-out assisted liquid / liquid extraction with acetonitrile
for bioanalysis using liquid chromatography – mass spectrometry // Microchem. J. 2013.
Vol. 108. P. 198–202.
50. Tubtimdee C., Shotipruk A. Extraction of phenolics from Terminalia chebula
Retz with water – ethanol and water – propylene glycol and sugaring-out concentration
of extracts // Sep. Purif. Technol. 2011. Vol. 77, № 3. P. 339–346.
51. Dhamole P.B., Mahajan P., Feng H. Sugaring out for separation of acetonitrile
and extraction of proteins and antibiotics // 11th Int. Congr. Eng. Food. Athens, Greece.
2011.
52. Dhamole P.B., Mahajan P., Feng H. Sugaring out : A new method for removal
of acetonitrile from preparative RP-HPLC eluent for protein purification // Process
Biochem. 2010. Vol. 45, № 10. P. 1672–1676.
53. Shi Z. et al. Sugaring-Out Assisted Liquid/Liquid Extraction Coupled with
HPLC for the Analysis of Honokiol and Magnolol in Traditional Chinese Herbal
Formula Huoxiang-Zhengqi Oral Liquid // J. Liq. Chromatogr. Relat. Technol. 2015.
Vol. 38, № 6. P. 722–728.54
54. Tsai W. et al. Application of sugaring-out extraction for the determination of
sulfonamides in honey by high-performance liquid chromatography with fluorescence
detection // J. Chromatogr. A. 2010. Vol. 1217, № 49. P. 7812–7815.
55. Wang X. et al. Homogeneous liquid – liquid extraction combined with gas
chromatography – electron capture detector for the determination of three pesticide
residues in soils // Anal. Chim. Acta. 2008. Vol. 620. P. 162–169.
56. Ebrahimzadeh H. et al. Homogeneous liquid – liquid extraction of trace
amounts of mononitrotoluenes from waste water samples // Anal. Chim. Acta. 2007.
Vol. 594. P. 93–100.
57. Tavakoli L. et al. Homogeneous liquid – liquid extraction for preconcentration
of polycyclic aromatic hydrocarbons using a water / methanol / chloroform ternary
component system // J. Chromatogr. A. 2008. Vol. 1196-1197. P. 133–138.
58. Haji M. et al. Analytica Chimica Acta Homogeneous liquid – liquid
microextraction via flotation assistance for rapid and efficient determination of
polycyclic aromatic hydrocarbons in water samples // Anal. Chim. Acta. 2013. Vol. 762.
P. 54–60.
59. Rezaee M. et al. Extraction and Separation of Molybdenum by Using
Homogeneous Liquid-Liquid Microextraction via Flotation Assistance // J. Braz. Chem.
Soc. 2015. Vol. 26, № 5. P. 880–886.
60. Amoli J.S., Hassan J., Mojtaba S.T. Development of Low Density
Miniaturized Homogeneous Liquid – Liquid Extraction for Determination of
Organochlorine Pesticide Residues in Cow ’ s Milk by Gas Chromatography / Electron
Capture Detector // Austin Chromatogr. 2014. Vol. 1, № 2. P. 1–4.
61. Takagai Y. et al. Preconcentration technique for nonylphenol using cellulose
cotton with homogenous liquid – liquid extraction for liquid chromatographic analysis //
Anal. Bioanal. Chem. 2004. Vol. 380. P. 351–354.
62. Silva de F., Martins W. Extraction of Fe (III), Cu (II), Co (II), Ni (II) and Pb
(II) with thenoyltrifluoroacetone using the ternary solvent system water / ethanol /
methylisobutylketone // Talanta. 1992. Vol. 39, № 10. P. 1307–1312.
63. Eiras P. Spectrophotometric determination of Mo (VI) in steel using a
homogeneous ternary solvent system after single-phase extraction // Talanta. 1998. Vol.
47. P. 719–727.55
64. Farajzadeh M.A., Afshar R., Akbar A. Determination of neonicotinoid
insecticide residues in edible oils by water-induced homogeneous liquid–liquid
extraction and dispersive liquid–liquid extraction followed by high performance liquid
chromatography-diode array detection // RSC Adv. 2015. Vol. 5. P. 77501–77507.
65. Rezaei F., Hosseini M.M. New method based on combining ultrasonic
assisted miniaturized matrix solid-phase dispersion and homogeneous liquid – liquid
extraction for the determination of some organochlorinated pesticides in fish // Anal.
Chim. Acta. 2011. Vol. 702, № 2. P. 274–279.
66. Hassan J. et al. Rapid and simple low density miniaturized homogeneous
liquid – liquid extraction and gas chromatography / mass spectrometric determination of
pesticide residues in sediment // J. Hazard. Mater. 2010. Vol. 184. P. 869–871.
67. Akiyama R., Takagai Y., Igarashi S. Determination of lower sub ppt levels of
environmental analytes using high-powered concentration system and high-performance
liquid chromatography with fluorescence detection // Analyst. 2004. Vol. 129. P. 369–
367.
68. Liu G. et al. Hydrophobic solvent induced phase transition extraction to
extract drugs from plasma for high performance liquid chromatography – mass
spectrometric analysis // J. Chromatogr. A. 2010. Vol. 1217. P. 243–249.
69. Yoshida M. et al. Extraction of Thiamylal in Serum Using Hydrophilic
Acetonitrile with Subzero-Temperature and Salting-Out Methods // Anal. Chem. 2004.
Vol. 76, № 16. P. 4672–4675.
70. Zhang H. et al. A Conversion of Sample Medium from Water to Acetonitrile
by Subzero Temperature Liquid-Liquid Extraction for Acetonitrile- Salt Stacking in
Capillary Electrophoresis // IERI Procedia. 2013. Vol. 5. P. 277–283.
71. Yoshida M., Akane A. Subzero-Temperature Liquid - Liquid Extraction of
Benzodiazepines for High-Performance Liquid Chromatography // Anal. Chem. 1999.
Vol. 71, № 9. P. 1918–1921.
72. Podolina E.A. et al. Low Temperature Liquid Extraction as a Method of the
Pretreatment of Phenol Samples for Reversed phase HPLS // J. Anal. Chem. 2010. Vol.
65, № 2. P. 121–123.
73. Alizadeh N., Ashtari K. Coalescence extraction of silver (I) using the
temperature-induced phase separation (TIPS) process // Sep. Purif. Technol. 2005. Vol.56
44. P. 79–84.
74. Hosseini M.H., Alizadeh N. Coalescence Extraction System for Rapid
Efficient and Selective Separation of Zirconium and Hafnium // Ind. Eng. Chem. Res.
2010. Vol. 49. P. 7068–7073.
75. Murata K., Yokoyama Y., Ikeda S. Homogeneous Liquid-Liquid Extraction
Method. Extraction of Iron(III) Thenoyltrifluoroacetonate by Propylene Carbonate //
Anal. Chem. 1972. Vol. 44, № 4. P. 805–810.
76. Igarashi S., Yotsuyanagi T. Homogeneous Liquid-Liquid Extraction by pH
Dependent Phase Separation with a Fluorocarbon Ionic Surfactant and Its Application to
the Preconcentration of Porphyrin Compounds // Mikrochim. Acta. 1992. Vol. 44. P. 37–
44.
77. Ghiasvand A.R. et al. Homogeneous liquid – liquid extraction method for the
selective separation and preconcentration of ultra trace molybdenum // Talanta. 2005.
Vol. 66. P. 912–916.
78. Igarashi S. et al. Homogeneous liquid – liquid extraction followed by X-ray
fluorescence spectrometry of a microdroplet on filter-paper for the simultaneous
determination of small amounts of metals // Analyst. 2000. Vol. 125. P. 797–798.
79. Takagai Y., Igarashi S. UV-detection capillary electrophoresis for
benzo[a]pyrene and pyrene following a two-step concentration system using
homogeneous liquid–liquid extraction and a sweeping method // Analyst. 2001. Vol.
126. P. 551–552.
80. Oshite S., Furukawa M., Igarashi S. Homogeneous liquid–liquid extraction
method for the selective spectrofluorimetric determination of trace amounts of
tryptophan // Analyst. 2001. Vol. 126. P. 703–706.
81. Farajzadeh M.A. et al. Optimization and application of homogeneous liquid –
liquid extraction in preconcentration of copper (II) in a ternary solvent system // J.
Hazard. Mater. 2009. Vol. 161. P. 1535–1543.
82. Igarashi S., Ide N., Takagai Y. High-performance liquid chromatographic –
spectrophotometric determination of copper (II) and palladium (II) with liquid – liquid
extraction in the water – acetic acid – chloroform ternary solvent system // Anal. Chim.
Acta. 2000. Vol. 424. P. 263–269.
83. Jessop P.G. Switchable Solvents // 10th Green Chem. Conf. Barcelona, Spain.57
2013.
84. Jessop P.G. et al. A solvent having switchable hydrophilicity // Green Chem.
2010. Vol. 12. P. 809–814.
85. Jessop P.G. et al. Design and evaluation of switchable-hydrophilicity solvents
// Green Chem. 2014. Vol. 16. P. 1187–1197.
86. Durelle J. et al. Extending the range of switchable- hydrophilicity solvents //
Phys. Chem. Chem. Phys. 2015. Vol. 17, № 3. P. 5308–5313.
87. Lasarte-aragonés G. et al. Use of switchable hydrophilicity solvents for the
homogeneous liquid – liquid microextraction of triazine herbicides from environmental
water samples // J. Sep. Sci. 2015. Vol. 00. P. 1–6.
88. Lasarte-aragonés G. et al. Use of switchable solvents in the microextraction
context // Talanta. 2015. Vol. 131. P. 645–649.
89. Shih H. et al. A novel fatty-acid-based in-tube dispersive liquid – liquid
microextraction technique for the rapid determination of nonylphenol and 4- tert -
octylphenol in aqueous samples using high-performance liquid chromatography –
ultraviolet // Anal. Chim. Acta. 2015. Vol. 854. P. 70–77.
90. Pimenta A.M. et al. Determination of Ofloxacin in Pharmaceuticals , Human
Urine and Serum Using a Potentiometric Sensor // Electroanalysis. 2011. Vol. 23, № 4.
P. 1013–1022.
91. Ballesteros O., Vılchez J.L., Navalon A. Determination of the antibacterial
ofloxacin in human urine and serum samples by solid-phase spectrofluorimetry // J.
Pharm. Biomed. Anal. 2002. Vol. 30. P. 1103–1110.
92. Amoli-diva M., Pourghazi K., Hajjaran S. Dispersive micro-solid phase
extraction using magnetic nanoparticle modi fi ed multi-walled carbon nanotubes
coupled with surfactant-enhanced spectro fl uorimetry for sensitive determination of
lome fl oxacin and o fl oxacin from biological samples // Mater. Sci. Eng. C. Elsevier
B.V., 2016. Vol. 60. P. 30–36.
93. Wu H., Zhao G., Du L. Determination of ofloxacin and gatifloxacin by mixed
micelle-mediated cloud point extraction-fluorimetry combined methodology //
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010. Vol. 75, № 5. P. 1624–1628.
94. El-kommos M.E. et al. Spectrofluorometric determination of certain quinolone
antibacterials using metal chelation // Talanta. 2003. Vol. 60. P. 1033–1050.58
95. El-brashy A.M., Metwally M.E., El-sepai F.A. Spectrophotometric
determination of some fluoroquinolone antibacterials by binary complex formation with
xanthene dyes // Farm. 2004. Vol. 59. P. 809–817.
96. Zhang F. et al. Simultaneous determination of ofloxacin and gatifloxacin on
cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate //
Bioelectrochemistry. 2013. Vol. 89. P. 42–49.
97. Zhang F. et al. A novel sensor based on electropolymerization of betacyclodextrin and l-arginine on carbon paste electrode for determination of
fluoroquinolones // Anal. Chim. Acta. 2013. Vol. 770. P. 53–61.
98. Reddy T.M., Balaji K., Reddy S.J. Voltammetric Behavior of Some
Fluorinated Quinolone Antibacterial Agents and Their Differential Pulse Voltammetric
Determination in Drug Formulations and Urine Samples Using a b -CyclodextrinModified Carbon-Paste Electrode 1 // J. Anal. Chem. 2007. Vol. 62, № 2. P. 168–175.
99. Sun H. et al. Simultaneous isolation of six fluoroquinolones in serum samples
by selective molecularly imprinted matrix solid-phase dispersion // Anal. Chim. Acta.
2008. Vol. 625. P. 154–159.
100. Ballesteros O. et al. Determination of fluoroquinolones in human urine by
liquid chromatography coupled to pneumatically assisted electrospray ionization mass
spectrometry // J. Chromatogr. B. 2003. Vol. 798. P. 137–144.
101. Mannemala S.S., Kannappan V. Multiple response optimization of a liquid
chromatographic method for determination of fluoroquinolone and nitroimidazole
antimicrobials in serum and urine // Clin. Biochem. 2016. Vol. 49. P. 587–595.
102. Wang H. et al. A phase separation method for analyses of fl uoroquinones in
meats based on ultrasound-assisted salt-induced liquid – liquid microextraction and a
new integrated device // Meat Sci. 2015. Vol. 106. P. 61–68.
103. Young H. et al. Hydrophilic interaction liquid chromatography – tandem
mass spectrometry for the determination of levofloxacin in human plasma // J. Pharm.
Biomed. Anal. 2006. Vol. 41. P. 622–627.
104. Khan F.U. et al. Simultaneous determination of moxifloxacin and ofloxacin
in physiological fluids using high performance liquid chromatography with ultraviolet
detection // J. Chromatogr. B. 2016. Vol. 1017-1018. P. 120–128.
105. Chan K.P. et al. Determination of ofloxacin and moxifloxacin and their59
penetration in human aqueous and vitreous humor by using high-performance liquid
chromatography fluorescence detection // Anal. Biochem. 2006. Vol. 353. P. 30–36.
106. Mu A., Salinas F.L. Determination of fluoroquinolones in urine and serum
by using high performance liquid chromatography and multiemission scan fluorimetric
detection // Talanta. 2006. Vol. 68. P. 1215–1221.
107. Immanuel C., Kumar A.K.H. Simple and rapid high-performance liquid
chromatography method for the determination of ofloxacin concentrations in plasma and
urine // J. Chromatogr. B. 2001. Vol. 760. P. 91–95.
108. Bottcher S. et al. An HPLC assay and a microbiological assay to determine
levofloxacin in soft tissue , bone , bile and serum // J. Pharm. Biomed. Anal. 2001. Vol.
25. P. 197–203.
109. Espinosa-Mansilla A. et al. HPLC determination of enoxacin, ciprofloxacin ,
norfloxacin and ofloxacin with photoinduced fluorimetric ( PIF ) detection and
multiemission scanning Application to urine and serum // J. Chromatogr. B. 2005. Vol.
822. P. 185–193.
110. Smet J. De et al. Pharmacokinetics of fluoroquinolones in critical care
patients : A bio-analytical HPLC method for the simultaneous quantification of ofloxacin
, ciprofloxacin and moxifloxacin in human plasma // J. Chromatogr. B. 2009. Vol. 877.
P. 961–967.
111. Neckel U. et al. Simultaneous determination of levofloxacin and
ciprofloxacin in microdialysates and plasma by high-performance liquid
chromatography // Anal. Chim. Acta. 2002. Vol. 463. P. 199–206.
112. Cheng G., Wu H., Huang Y. Simultaneous determination of
malondialdehyde and ofloxacin in plasma using an isocratic high-performance liquid
chromatography / fluorescence detection system // Anal. Chim. Acta. 2008. Vol. 6. P.
230–234.
113. Meredith S.A. et al. Journal of Pharmaceutical and Biomedical Analysis An
LC – MS / MS method for the determination of ofloxacin in 20 microliters of human
plasma // J. Pharm. Biomed. Anal. 2012. Vol. 58. P. 177–181

Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2025 Cервис помощи студентам в выполнении работ