Введение 2
1 Метод разделения переменных в сферической системе координат 4
1.1 Сферические координаты 4
1.2 Уравнение Лапласа в сферической системе координат 5
1.3 Построение общего решения уравнения Лапласа 6
2 Моделирование полевого катода в виде сферы на конусе 8
2.1 Физическая постановка задачи моделирования полевого катода 8
2.2 Решение задачи 1 10
2.2.1 Математическая модель задачи 1 10
2.2.2 Распределение потенциала задачи 1 11
2.3 Решение задачи 2 12
2.3.1 Математическая модель задачи 2 12
2.3.2 Распределение потенциала задачи 2 13
2.4 Результаты численных расчетов 14
Заключение 16
Приложение 17
В современных научных изысканиях и повседневной жизни широкое применение находят, так называемые, вакуумные электронные устройства: электронные микроскопы, световые индикаторы, плоские дисплеи. В основе этих приборов лежит явление автоэлектронной эмиссии полевого катода[ ]. Моделированию и всестороннему изучению этого явления и посвящена данная работа.
Автоэлектронной эмиссией называется явление испускания электронов проводящими телами под действием электрического поля напряженностью F = 107 — 108 В/см. Для создания такого электрического поля, к обычным макроскопическим электродам необходимо было бы прикладывать напряжения в десятки миллионов вольт. На практике автоэлектронную эмиссию можно возбудить при меньших напряжениях, если придать катоду форму топкого острия с радиусом вершины в десятые или сотые доли микрона.
В данной работе были построены модели двух диодных эмиссионных систем в виде сферы на конусовидной поверхности (Рис. 2.1. 2.2).
Первая — представляет собой систему, в которой вершина катода имеет сферическую форму, «тело» катода — конусовидную поверхность с некоторым углом раствора, анод представляет собой часть сферической поверхности. Для расчета потенциала использовался метод разделения переменных в сферической системе координат для уравнения Лапласа с граничными условиями 1 рода (2.1). Распределение потенциала найдено в аналитическом во всей области диодной системы (2.9).
Вторая — осесимметричная система, представляющая собой острие на сферах. Граничные условия заданы как кусочно постояные функции так, чтобы нулевая эквипотенциаль представляла собой «виртуальный» катод с вершиной сферической формы на конусовидном «теле» острия (2.10, 2.11). Для нахождения распределения потенциала так же используется метод разделения переменных. Распределение потенциала найдено в аналитическом во всей области диодной системы (2.12, 2.13, 2.14), а так же представлен численный расчет данной системы.