1. Крылов В.А. и др. Жидкофазное микроэкстракционное
концентрирование примесей // Журнал аналитической химии. 2011. Т. 66, № 4. С.
341–360.
2. Namies J. The 12 principles of green analytical chemistry and the
SIGNIFICANCE mnemonic of green analytical practices // Trends Anal. Chem. 2013.
Vol. 50. P. 78–84.
3. Timofeeva I. et al. Stepwise injection potentiometric determination of caffeine
in saliva using single-drop microextraction combined with solvent exchange // Talanta.
2016. Vol. 150. P. 655–660.
4. Carasek E., Merib J. Membrane-based microextraction techniques in
analytical chemistry : A review // Anal. Chim. Acta, 2015. Vol. 880. P. 8–25.
5. Anthemidis A.N., Ioannou K.G. Recent developments in homogeneous and
dispersive liquid – liquid extraction for inorganic elements determination. A review //
Talanta. 2009. Vol. 80. P. 413–421.
6. Paleologos E.K., Giokas D.L., Karayannis M.I. Micelle-mediated separation
and cloud-point extraction // Trends Anal. Chem. 2005. Vol. 24, № 5. P. 426–436.
7. Ming-jie L.I. et al. Progress of Extraction Solvent Dispersion Strategies for
Dispersive Liquid-liquid Microextraction // Chinese J. Anal. Chem. 2015. Vol. 43, № 8.
P. 1231–1240.
8. Matkovich C.E. Salting-Out of Acetone from Water- Basis of a New Solvent
Extraction System // Anal. Chem. 1973. Vol. 45, № 11. P. 1915–1921.
9. Matkovich C.E., Christian G.D. Solvent Extraction of Metal Chelates into
Water-Immiscible Acetone // Anal. Chem. 1974. Vol. 46, № 1. P. 102–106.
10. Jain A., Gupta M., Verma K.K. Salting-out assisted liquid – liquid extraction
for the determination of biogenic amines in fruit juices and alcoholic beverages after
derivatization with 1-naphthylisothiocyanate and high performance liquid
chromatography // J. Chromatogr. A. 2015. Vol. 1422. P. 60–72.
11. Gure A. et al. Salting-out assisted liquid – liquid extraction combined with
capillary HPLC for the determination of sulfonylurea herbicides in environmental water
and banana juice samples // Talanta. 2014. Vol. 127. P. 51–58.
12. Razmara R.S., Daneshfar A., Sahrai R. Determination of methylene blue and50
sunset yellow in wastewater and food samples using salting-out assisted liquid – liquid
extraction // J. Ind. Eng. Chem. The Korean Society of Industrial and Engineering
Chemistry, 2011. Vol. 17, № 3. P. 533–536.
13. Liu J. et al. Miniaturized salting-out liquid – liquid extraction of sulfonamides
from different matrices // Anal. Chim. Acta. 2010. Vol. 679. P. 74–80.
14. Sereshti H., Khosraviani M., Amini-fazl M.S. Miniaturized salting-out liquid
– liquid extraction in a coupled-syringe system combined with HPLC – UV for
extraction and determination of sulfanilamide // Talanta. 2014. Vol. 121. P. 199–204.
15. Wang M., Cai Z., Xu L. Coupling of acetonitrile deproteinization and saltingout extraction with acetonitrile stacking in chiral capillary electrophoresis for the
determination of warfarin enantiomers // J. Chromatogr. A. 2011. Vol. 1218, № 26. P.
4045–4051.
16. Tsai W. et al. Determination of sulfonamides in swine muscle after salting-out
assisted liquid extraction with acetonitrile coupled with back-extraction by a water /
acetonitrile / dichloromethane ternary component system prior to high-performance
liquid chromatography // J. Chromatogr. A. 2010. Vol. 1217. P. 250–255.
17. Zhang K. et al. Multiresidue Pesticide Analysis of Agricultural Commodities
Using Acetonitrile Salt-Out Extraction , Dispersive Solid-Phase Sample Clean-Up , and
High-Performance Liquid Chromatography À Tandem Mass Spectrometry // J. Agric.
Food Chem. 2011. Vol. 59. P. 7636–7646.
18. Valente I.M., Gonc L.M., Rodrigues J.A. Another glimpse over the salting-out
assisted liquid – liquid extraction in acetonitrile / water mixtures // J. Chromatogr. A.
2013. Vol. 1308. P. 58–62.
19. Nagaosa Y., Sakata K. Salting-out extraction technique for pretreatment in the
liquid chromatographic determination of copper ( II ), aluminum ( III ), iron ( III ) and
manganese ( II ) in biological samples // Talanta. 1998. Vol. 46. P. 647–654.
20. Myasein F. et al. Rapid , simultaneous determination of lopinavir and ritonavir
in human plasma by stacking protein precipitations and salting-out assisted liquid /
liquid extraction , and ultrafast LC – MS / MS // Anal. Chim. Acta. 2009. Vol. 651. P.
112–116.
21. Sparidans R.W. et al. Liquid chromatography – tandem mass spectrometric
assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid –51
liquid extraction // J. Chromatogr. B. 2016. Vol. 1012. P. 118–123.
22. Ahmed S., Mahmoud A.M. A novel salting-out assisted extraction coupled
with HPLC- fl uores- cence detection for trace determination of vitamin K homologues
in human plasma // Talanta. 2015. Vol. 144. P. 480–487.
23. Hassan J., Bahrani S.H. Determination of atorvastatin in human serum by
salting out assisted solvent extraction and reversed-phase high-performance liquid
chromatography – UV detection // Arab. J. Chem. 2014. Vol. 7, № 1. P. 87–90.
24. Gao M. et al. Optimization of a phase separation based magnetic-stirring saltinduced liquid – liquid microextraction method for determination of fluoroquinolones in
food // Food Chem. 2015. Vol. 175. P. 181–188.
25. Wang H. et al. Integration of phase separation with ultrasound-assisted saltinduced liquid – liquid microextraction for analyzing the fluoroquinones in human body
fluids by liquid chromatography // J. Chromatogr. B. 2015. Vol. 985. P. 62–70.
26. Gupta M. et al. Salt-assisted liquid – liquid microextraction for the
determination of iodine in table salt by high-performance liquid chromatography-diode
array detection // Food Chem. 2011. Vol. 124, № 4. P. 1741–1746.
27. Fu H. et al. Salting-out extraction of carboxylic acids // Sep. Purif. Technol.
2015. Vol. 139. P. 36–42.
28. Chen J. et al. Extraction and purification of flavanone glycosides and
kaemferol glycosides from defatted Camellia oleifera seeds by salting-out using
hydrophilic isopropanol // Sep. Purif. Technol. 2009. Vol. 67. P. 31–37.
29. Chung N.H., Tabata M. Salting-out phase separation of the mixture of 2-
propanol and water for selective extraction of cobalt ( II ) in the presence of manganese (
II ), nickel ( II ), and copper ( II ) // Hydrometallurgy. 2004. Vol. 73. P. 81–89.
30. Xie X. et al. Extraction mechanism of sulfamethoxazole in water samples
using aqueous two-phase systems of poly (propylene glycol) and salt // Anal. Chim.
Acta. 2011. Vol. 687, № 1. P. 61–66.
31. Tabata M., Kumamoto M., Nishimoto J. Chemical Properties of WaterMiscible Solvents Separated and Their Application to Solvent Extraction // Anal. Sci.
1994. Vol. 10. P. 383–388.
32. Lundanes E. Quantification of Nerve Agent Biomarkers in Human Serum and
Urine // Anal. Chem. 2014. Vol. 86. P. 11833–11840.52
33. Pratiwi A.I. et al. Extraction of succinic acid by aqueous two-phase system
using alcohols / salts and ionic liquids / salts // Sep. Purif. Technol. 2015. Vol. 155. P.
127–132.
34. Majidi B., Shemirani F. Salt-assisted liquid-liquid microextraction of Cr (VI)
ion using an ionic liquid for preconcentration prior to its determination by flame atomic
absorption spectrometry // Microchim. Acta. 2012. Vol. 176. P. 143–151.
35. Ventura P.M. et al. Evaluation of Anion Influence on the Formation and
Extraction Capacity of Ionic-Liquid-Based Aqueous Biphasic Systems // J. Phys. Chem.
B. 2009. Vol. 113. P. 9304–9310.
36. Liu Q. et al. Partitioning Behavior of Penicillin G in Aqueous Two Phase
System Formed by Ionic Liquids and Phosphate Partitioning Behavior of Penicillin G in
// Sep. Sci. Technol. 2006. Vol. 41. P. 2849–2858.
37. He C. et al. Extraction of testosterone and epitestosterone in human urine
using aqueous two-phase systems of ionic liquid and salt // J. Chromatogr. A. 2005. Vol.
1082. P. 143–149.
38. Li S. et al. Ionic liquid-based aqueous two-phase system , a sample
pretreatment procedure prior to high-performance liquid chromatography of opium
alkaloids // J. Chromatogr. B. 2005. Vol. 826. P. 58–62.
39. Li C. et al. Extraction and mechanism investigation of trace roxithromycin in
real water samples by use of ionic liquid – salt aqueous two-phase system // Anal. Chim.
Acta. 2009. Vol. 653. P. 178–183.
40. Farajzadeh M.A. et al. Development of counter current salting-out
homogenous liquid – liquid extraction for isolation and preconcentration of some
pesticides from aqueous samples // Anal. Chim. Acta. 2015. Vol. 885. P. 122–131.
41. Ali M. et al. Development of a new extraction method based on counter
current salting-out homogenous liquid – liquid extraction followed by dispersive liquid –
liquid microextraction : Application for the extraction and preconcentration of widely
used pesticide // Talanta. 2016. Vol. 146. P. 772–779.
42. Akramipour R. et al. Combination of counter current salting-out homogenous
liquid – liquid extraction and dispersive liquid – liquid microextraction as a novel
microextraction of drugs in urine samples // J. Chromatogr. B. 2016. Vol. 1012. P. 162–
168.53
43. Mohamed A.I., Abdel-wadood H.M. Simultaneous determination of
dorzolomide and timolol in aqueous humor : A novel salting out liquid – liquid
microextraction combined with HPLC // Talanta. 2014. Vol. 130. P. 495–505.
44. Chen M. et al. Rapid determination of triclosan in personal care products
using new in-tube based ultrasound-assisted salt-induced liquid – liquid microextraction
coupled with high performance liquid chromatography-ultraviolet detection // Anal.
Chim. Acta. 2013. Vol. 767. P. 81–87.
45. Wang B. et al. Sugaring-out : A novel phase separation and extraction system
// Chem. Eng. Sci. 2008. Vol. 63. P. 2595–2600.
46. Feng H., Ezeji T., Blaschek H. Sugaring-Out Separation of Acetonitrile from
Its Aqueous Solution // Chem. Eng. Technol. 2008. Vol. 31, № 12. P. 1869–1874.
47. Yan L., Sun Y., Xiu Z. Sugaring-out Extraction Coupled with Fermentation of
Lactic Acid // Sep. Purif. Technol. 2016. Vol. 161. P. 152–158.
48. Zhang C. et al. Sugaring-out three-liquid-phase extraction and one-step
separation of Pt ( IV ), Pd ( II ) and Rh ( III ) // Sep. Purif. Technol. Elsevier B.V., 2012.
Vol. 87. P. 127–134.
49. Zhang J. et al. Sugaring-out assisted liquid / liquid extraction with acetonitrile
for bioanalysis using liquid chromatography – mass spectrometry // Microchem. J. 2013.
Vol. 108. P. 198–202.
50. Tubtimdee C., Shotipruk A. Extraction of phenolics from Terminalia chebula
Retz with water – ethanol and water – propylene glycol and sugaring-out concentration
of extracts // Sep. Purif. Technol. 2011. Vol. 77, № 3. P. 339–346.
51. Dhamole P.B., Mahajan P., Feng H. Sugaring out for separation of acetonitrile
and extraction of proteins and antibiotics // 11th Int. Congr. Eng. Food. Athens, Greece.
2011.
52. Dhamole P.B., Mahajan P., Feng H. Sugaring out : A new method for removal
of acetonitrile from preparative RP-HPLC eluent for protein purification // Process
Biochem. 2010. Vol. 45, № 10. P. 1672–1676.
53. Shi Z. et al. Sugaring-Out Assisted Liquid/Liquid Extraction Coupled with
HPLC for the Analysis of Honokiol and Magnolol in Traditional Chinese Herbal
Formula Huoxiang-Zhengqi Oral Liquid // J. Liq. Chromatogr. Relat. Technol. 2015.
Vol. 38, № 6. P. 722–728.54
54. Tsai W. et al. Application of sugaring-out extraction for the determination of
sulfonamides in honey by high-performance liquid chromatography with fluorescence
detection // J. Chromatogr. A. 2010. Vol. 1217, № 49. P. 7812–7815.
55. Wang X. et al. Homogeneous liquid – liquid extraction combined with gas
chromatography – electron capture detector for the determination of three pesticide
residues in soils // Anal. Chim. Acta. 2008. Vol. 620. P. 162–169.
56. Ebrahimzadeh H. et al. Homogeneous liquid – liquid extraction of trace
amounts of mononitrotoluenes from waste water samples // Anal. Chim. Acta. 2007.
Vol. 594. P. 93–100.
57. Tavakoli L. et al. Homogeneous liquid – liquid extraction for preconcentration
of polycyclic aromatic hydrocarbons using a water / methanol / chloroform ternary
component system // J. Chromatogr. A. 2008. Vol. 1196-1197. P. 133–138.
58. Haji M. et al. Analytica Chimica Acta Homogeneous liquid – liquid
microextraction via flotation assistance for rapid and efficient determination of
polycyclic aromatic hydrocarbons in water samples // Anal. Chim. Acta. 2013. Vol. 762.
P. 54–60.
59. Rezaee M. et al. Extraction and Separation of Molybdenum by Using
Homogeneous Liquid-Liquid Microextraction via Flotation Assistance // J. Braz. Chem.
Soc. 2015. Vol. 26, № 5. P. 880–886.
60. Amoli J.S., Hassan J., Mojtaba S.T. Development of Low Density
Miniaturized Homogeneous Liquid – Liquid Extraction for Determination of
Organochlorine Pesticide Residues in Cow ’ s Milk by Gas Chromatography / Electron
Capture Detector // Austin Chromatogr. 2014. Vol. 1, № 2. P. 1–4.
61. Takagai Y. et al. Preconcentration technique for nonylphenol using cellulose
cotton with homogenous liquid – liquid extraction for liquid chromatographic analysis //
Anal. Bioanal. Chem. 2004. Vol. 380. P. 351–354.
62. Silva de F., Martins W. Extraction of Fe (III), Cu (II), Co (II), Ni (II) and Pb
(II) with thenoyltrifluoroacetone using the ternary solvent system water / ethanol /
methylisobutylketone // Talanta. 1992. Vol. 39, № 10. P. 1307–1312.
63. Eiras P. Spectrophotometric determination of Mo (VI) in steel using a
homogeneous ternary solvent system after single-phase extraction // Talanta. 1998. Vol.
47. P. 719–727.55
64. Farajzadeh M.A., Afshar R., Akbar A. Determination of neonicotinoid
insecticide residues in edible oils by water-induced homogeneous liquid–liquid
extraction and dispersive liquid–liquid extraction followed by high performance liquid
chromatography-diode array detection // RSC Adv. 2015. Vol. 5. P. 77501–77507.
65. Rezaei F., Hosseini M.M. New method based on combining ultrasonic
assisted miniaturized matrix solid-phase dispersion and homogeneous liquid – liquid
extraction for the determination of some organochlorinated pesticides in fish // Anal.
Chim. Acta. 2011. Vol. 702, № 2. P. 274–279.
66. Hassan J. et al. Rapid and simple low density miniaturized homogeneous
liquid – liquid extraction and gas chromatography / mass spectrometric determination of
pesticide residues in sediment // J. Hazard. Mater. 2010. Vol. 184. P. 869–871.
67. Akiyama R., Takagai Y., Igarashi S. Determination of lower sub ppt levels of
environmental analytes using high-powered concentration system and high-performance
liquid chromatography with fluorescence detection // Analyst. 2004. Vol. 129. P. 369–
367.
68. Liu G. et al. Hydrophobic solvent induced phase transition extraction to
extract drugs from plasma for high performance liquid chromatography – mass
spectrometric analysis // J. Chromatogr. A. 2010. Vol. 1217. P. 243–249.
69. Yoshida M. et al. Extraction of Thiamylal in Serum Using Hydrophilic
Acetonitrile with Subzero-Temperature and Salting-Out Methods // Anal. Chem. 2004.
Vol. 76, № 16. P. 4672–4675.
70. Zhang H. et al. A Conversion of Sample Medium from Water to Acetonitrile
by Subzero Temperature Liquid-Liquid Extraction for Acetonitrile- Salt Stacking in
Capillary Electrophoresis // IERI Procedia. 2013. Vol. 5. P. 277–283.
71. Yoshida M., Akane A. Subzero-Temperature Liquid - Liquid Extraction of
Benzodiazepines for High-Performance Liquid Chromatography // Anal. Chem. 1999.
Vol. 71, № 9. P. 1918–1921.
72. Podolina E.A. et al. Low Temperature Liquid Extraction as a Method of the
Pretreatment of Phenol Samples for Reversed phase HPLS // J. Anal. Chem. 2010. Vol.
65, № 2. P. 121–123.
73. Alizadeh N., Ashtari K. Coalescence extraction of silver (I) using the
temperature-induced phase separation (TIPS) process // Sep. Purif. Technol. 2005. Vol.56
44. P. 79–84.
74. Hosseini M.H., Alizadeh N. Coalescence Extraction System for Rapid
Efficient and Selective Separation of Zirconium and Hafnium // Ind. Eng. Chem. Res.
2010. Vol. 49. P. 7068–7073.
75. Murata K., Yokoyama Y., Ikeda S. Homogeneous Liquid-Liquid Extraction
Method. Extraction of Iron(III) Thenoyltrifluoroacetonate by Propylene Carbonate //
Anal. Chem. 1972. Vol. 44, № 4. P. 805–810.
76. Igarashi S., Yotsuyanagi T. Homogeneous Liquid-Liquid Extraction by pH
Dependent Phase Separation with a Fluorocarbon Ionic Surfactant and Its Application to
the Preconcentration of Porphyrin Compounds // Mikrochim. Acta. 1992. Vol. 44. P. 37–
44.
77. Ghiasvand A.R. et al. Homogeneous liquid – liquid extraction method for the
selective separation and preconcentration of ultra trace molybdenum // Talanta. 2005.
Vol. 66. P. 912–916.
78. Igarashi S. et al. Homogeneous liquid – liquid extraction followed by X-ray
fluorescence spectrometry of a microdroplet on filter-paper for the simultaneous
determination of small amounts of metals // Analyst. 2000. Vol. 125. P. 797–798.
79. Takagai Y., Igarashi S. UV-detection capillary electrophoresis for
benzo[a]pyrene and pyrene following a two-step concentration system using
homogeneous liquid–liquid extraction and a sweeping method // Analyst. 2001. Vol.
126. P. 551–552.
80. Oshite S., Furukawa M., Igarashi S. Homogeneous liquid–liquid extraction
method for the selective spectrofluorimetric determination of trace amounts of
tryptophan // Analyst. 2001. Vol. 126. P. 703–706.
81. Farajzadeh M.A. et al. Optimization and application of homogeneous liquid –
liquid extraction in preconcentration of copper (II) in a ternary solvent system // J.
Hazard. Mater. 2009. Vol. 161. P. 1535–1543.
82. Igarashi S., Ide N., Takagai Y. High-performance liquid chromatographic –
spectrophotometric determination of copper (II) and palladium (II) with liquid – liquid
extraction in the water – acetic acid – chloroform ternary solvent system // Anal. Chim.
Acta. 2000. Vol. 424. P. 263–269.
83. Jessop P.G. Switchable Solvents // 10th Green Chem. Conf. Barcelona, Spain.57
2013.
84. Jessop P.G. et al. A solvent having switchable hydrophilicity // Green Chem.
2010. Vol. 12. P. 809–814.
85. Jessop P.G. et al. Design and evaluation of switchable-hydrophilicity solvents
// Green Chem. 2014. Vol. 16. P. 1187–1197.
86. Durelle J. et al. Extending the range of switchable- hydrophilicity solvents //
Phys. Chem. Chem. Phys. 2015. Vol. 17, № 3. P. 5308–5313.
87. Lasarte-aragonés G. et al. Use of switchable hydrophilicity solvents for the
homogeneous liquid – liquid microextraction of triazine herbicides from environmental
water samples // J. Sep. Sci. 2015. Vol. 00. P. 1–6.
88. Lasarte-aragonés G. et al. Use of switchable solvents in the microextraction
context // Talanta. 2015. Vol. 131. P. 645–649.
89. Shih H. et al. A novel fatty-acid-based in-tube dispersive liquid – liquid
microextraction technique for the rapid determination of nonylphenol and 4- tert -
octylphenol in aqueous samples using high-performance liquid chromatography –
ultraviolet // Anal. Chim. Acta. 2015. Vol. 854. P. 70–77.
90. Pimenta A.M. et al. Determination of Ofloxacin in Pharmaceuticals , Human
Urine and Serum Using a Potentiometric Sensor // Electroanalysis. 2011. Vol. 23, № 4.
P. 1013–1022.
91. Ballesteros O., Vılchez J.L., Navalon A. Determination of the antibacterial
ofloxacin in human urine and serum samples by solid-phase spectrofluorimetry // J.
Pharm. Biomed. Anal. 2002. Vol. 30. P. 1103–1110.
92. Amoli-diva M., Pourghazi K., Hajjaran S. Dispersive micro-solid phase
extraction using magnetic nanoparticle modi fi ed multi-walled carbon nanotubes
coupled with surfactant-enhanced spectro fl uorimetry for sensitive determination of
lome fl oxacin and o fl oxacin from biological samples // Mater. Sci. Eng. C. Elsevier
B.V., 2016. Vol. 60. P. 30–36.
93. Wu H., Zhao G., Du L. Determination of ofloxacin and gatifloxacin by mixed
micelle-mediated cloud point extraction-fluorimetry combined methodology //
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010. Vol. 75, № 5. P. 1624–1628.
94. El-kommos M.E. et al. Spectrofluorometric determination of certain quinolone
antibacterials using metal chelation // Talanta. 2003. Vol. 60. P. 1033–1050.58
95. El-brashy A.M., Metwally M.E., El-sepai F.A. Spectrophotometric
determination of some fluoroquinolone antibacterials by binary complex formation with
xanthene dyes // Farm. 2004. Vol. 59. P. 809–817.
96. Zhang F. et al. Simultaneous determination of ofloxacin and gatifloxacin on
cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate //
Bioelectrochemistry. 2013. Vol. 89. P. 42–49.
97. Zhang F. et al. A novel sensor based on electropolymerization of betacyclodextrin and l-arginine on carbon paste electrode for determination of
fluoroquinolones // Anal. Chim. Acta. 2013. Vol. 770. P. 53–61.
98. Reddy T.M., Balaji K., Reddy S.J. Voltammetric Behavior of Some
Fluorinated Quinolone Antibacterial Agents and Their Differential Pulse Voltammetric
Determination in Drug Formulations and Urine Samples Using a b -CyclodextrinModified Carbon-Paste Electrode 1 // J. Anal. Chem. 2007. Vol. 62, № 2. P. 168–175.
99. Sun H. et al. Simultaneous isolation of six fluoroquinolones in serum samples
by selective molecularly imprinted matrix solid-phase dispersion // Anal. Chim. Acta.
2008. Vol. 625. P. 154–159.
100. Ballesteros O. et al. Determination of fluoroquinolones in human urine by
liquid chromatography coupled to pneumatically assisted electrospray ionization mass
spectrometry // J. Chromatogr. B. 2003. Vol. 798. P. 137–144.
101. Mannemala S.S., Kannappan V. Multiple response optimization of a liquid
chromatographic method for determination of fluoroquinolone and nitroimidazole
antimicrobials in serum and urine // Clin. Biochem. 2016. Vol. 49. P. 587–595.
102. Wang H. et al. A phase separation method for analyses of fl uoroquinones in
meats based on ultrasound-assisted salt-induced liquid – liquid microextraction and a
new integrated device // Meat Sci. 2015. Vol. 106. P. 61–68.
103. Young H. et al. Hydrophilic interaction liquid chromatography – tandem
mass spectrometry for the determination of levofloxacin in human plasma // J. Pharm.
Biomed. Anal. 2006. Vol. 41. P. 622–627.
104. Khan F.U. et al. Simultaneous determination of moxifloxacin and ofloxacin
in physiological fluids using high performance liquid chromatography with ultraviolet
detection // J. Chromatogr. B. 2016. Vol. 1017-1018. P. 120–128.
105. Chan K.P. et al. Determination of ofloxacin and moxifloxacin and their59
penetration in human aqueous and vitreous humor by using high-performance liquid
chromatography fluorescence detection // Anal. Biochem. 2006. Vol. 353. P. 30–36.
106. Mu A., Salinas F.L. Determination of fluoroquinolones in urine and serum
by using high performance liquid chromatography and multiemission scan fluorimetric
detection // Talanta. 2006. Vol. 68. P. 1215–1221.
107. Immanuel C., Kumar A.K.H. Simple and rapid high-performance liquid
chromatography method for the determination of ofloxacin concentrations in plasma and
urine // J. Chromatogr. B. 2001. Vol. 760. P. 91–95.
108. Bottcher S. et al. An HPLC assay and a microbiological assay to determine
levofloxacin in soft tissue , bone , bile and serum // J. Pharm. Biomed. Anal. 2001. Vol.
25. P. 197–203.
109. Espinosa-Mansilla A. et al. HPLC determination of enoxacin, ciprofloxacin ,
norfloxacin and ofloxacin with photoinduced fluorimetric ( PIF ) detection and
multiemission scanning Application to urine and serum // J. Chromatogr. B. 2005. Vol.
822. P. 185–193.
110. Smet J. De et al. Pharmacokinetics of fluoroquinolones in critical care
patients : A bio-analytical HPLC method for the simultaneous quantification of ofloxacin
, ciprofloxacin and moxifloxacin in human plasma // J. Chromatogr. B. 2009. Vol. 877.
P. 961–967.
111. Neckel U. et al. Simultaneous determination of levofloxacin and
ciprofloxacin in microdialysates and plasma by high-performance liquid
chromatography // Anal. Chim. Acta. 2002. Vol. 463. P. 199–206.
112. Cheng G., Wu H., Huang Y. Simultaneous determination of
malondialdehyde and ofloxacin in plasma using an isocratic high-performance liquid
chromatography / fluorescence detection system // Anal. Chim. Acta. 2008. Vol. 6. P.
230–234.
113. Meredith S.A. et al. Journal of Pharmaceutical and Biomedical Analysis An
LC – MS / MS method for the determination of ofloxacin in 20 microliters of human
plasma // J. Pharm. Biomed. Anal. 2012. Vol. 58. P. 177–181.
114. Liang H., Kays M.B., Sowinski K.M. Separation of levofloxacin,
ciprofloxacin, gatifloxacin, moxifloxacin, trovafloxacin and cinoxacin by highperformance liquid chromatography: application to levofloxacin determination in human60
plasma // J. Chromatogr. B. 2002. Vol. 772. P. 53–63.
115. Sun Y., Zhang Z., Xi Z. Direct electrogenerated chemiluminescence
detection in high-performance liquid chromatography for determination of ofloxacin //
Anal. Chim. Acta. 2008. Vol. 623. P. 96–100.
116. Gao W. et al. Application of single drop liquid – liquid – liquid
microextraction for the determination of fluoroquinolones in human urine by capillary
electrophoresis // J. Chromatogr. B. 2011. Vol. 879, № 3-4. P. 291–295.
117. Borrull F., Calull M., Hernandez M. Determination of quinolones in plasma
samples by capillary electrophoresis using solid-phase extraction // J. Chromatogr. B.
2000. Vol. 742. P. 255–265.
118. Un H.S., Liqing L.I., Hen X.C. Flow-Injection Chemiluminescence
Determination of Ofloxacin and Levofloxacin in Pharmaceutical Preparations and
Biological Fluids // Anal. Sci. 2006. Vol. 22. P. 1145–1149.
119. Yi L. et al. Flow-injection analysis of two fluoquinolones by the sensitizing
effect of terbium (III) on chemiluminescence of the potassium permanganate Á sodium
sulfite system // Talanta. 2003. Vol. 61. P. 403–409.
120. Sun H. et al. Determination of ofloxacin and levofloxacin in pharmaceutical
preparation and human urine using a new flow-injection chemiluminescence system with
Cu(III) complex // Asian J. Pharm. Sci. Res. 2011. № 5. P. 21–32.
121. Zhang X. et al. Flow-injection with enhanced chemiluminescence detection
of ofloxacin in human plasma // Luminescence. 2005. Vol. 20. P. 362–369.
122. Aly F.A., Al-tamimi S.A., Alwarthan A.A. Chemiluminescence
determination of some fluoroquinolone derivatives in pharmaceutical formulations and
biological fluids using [Ru(bipy)32+ ]–Ce(IV) system // Talanta. 2001. Vol. 53. P. 885–
893.
123. Wang L. et al. A flow injection chemiluminescence method for the
determination of fluoroquinolone derivative using the reaction of luminol and hydrogen
peroxide catalyzed by gold nanoparticles // Talanta. 2007. Vol. 72. P. 1066–1072.
124. Imenta A.M.P. et al. Ofloxacin Determination in Urine , Serum and
Pharmaceuticals Using an Automatic Flow Potentiometric System // Anal. Sci. 2013.
Vol. 29. P. 5–8.
125. Albero M.I., Abuherba M.S., Garcı M.S. Flow injection spectrophotometric61
determination of ofloxacin in pharmaceuticals and urine // Eur. J. Pharm. Biopharm.
2005. Vol. 61. P. 87–93.
126. Cheng G., Wu H., Huang Y. Automated on-line microdialysis sampling
coupled with high-performance liquid chromatography for simultaneous determination
of malondialdehyde and ofloxacin in whole blood // Talanta. 2009. Vol. 79. P. 1071–
1075.
127. Juan Q. et al. Recognition and simultaneous determination of ofloxacin
enantiomers by synchronization – 1st derivative fluorescence spectroscopy // Talanta.
2000. Vol. 53. P. 359–365.
128. Xie H., Wang Z., Fu Z. Highly sensitive trivalent copper chelate – luminol
chemiluminescence system for capillary electrophoresis chiral separation and
determination of o fl oxacin enantiomers in urine samples // J. Pharm. Anal. 2014. Vol.
4, № 6. P. 412–416.
129. Yin X. et al. Short-capillary electrophoresis with electrochemiluminescence
detection using porous etched joint for fast analysis of lidocaine and ofloxacin // J.
Chromatogr. A. 2004. Vol. 1055. P. 223–228.
130. Vakh C. et al. A fully automated effervescence-assisted switchable solventbased liquid phase microextraction procedure: Liquid chromatographic determination of
ofloxacin in human urine samples // Anal. Chim. Acta. 2016. Vol. 907. P. 54–59.
131. Crespo-alonso M. et al. Biomass against emerging pollution in wastewater :
Ability of cork for the removal of ofloxacin from aqueous solutions at different pH // J.
Environ. Chem. Eng. Elsevier B.V., 2013. Vol. 1, № 4. P. 1199–1204Купить