В анализе временных рядов есть важная задача представления наблюдаемого ряда в виде суммы интерпретируемых компонент, таких как тренд, периодики, шум. Одним из методов, решающих эту задачу без задания параметрической модели компонент, является метод анализа сингулярного спектра (singular spectrum analysis, SSA, см. монографии [1, 2] и ссылки в них). Идея метода состоит в построении так называемой траекторной матрицы временного ряда, ее сингулярном разложении с последующей группировкой матричных компонент сингулярного разложения и в переходе обратно от сгруппированного матричного разложения к разложению временного ряда.
Понятие разделимости компонент временного ряда связано со способностью метода с помощью правильной группировки выделить эти компоненты из наблюдаемой суммы. Слабая разделимость рядов X(1) и X(2) означает, что существует такое сингулярное разложение траекторной матрицы ряда X = X(1) + X(2), которое можно разделить на две группы, одна из которых соответствует X(1), а вторая — X(2). Сильная разделимость означает, что для любого сингулярного разложения это так.
В ряде случаев, например в случае слабой разделимости двух синусов с разными частотами и одинаковыми амплитудами, сильная разделимость отсутствует [3].
Возникает задача построения другого оптимизационного критерия, который мог бы сильно разделить компоненты, не разделённые с помощью SSA, использующего оптимальные свойства сингулярного разложения. Метод решения этой задачи, называемый DerivSSA, был предложен в работе [4]. Метод DerivSSA меняет вклады компонент, рассматривая не только сам ряд, но и его производную.
Метод, предлагаемый в этой работе, использует идею метода анализа независимых компонент (independent component analysis, ICA [5]). В [2] упоминается использование FastICA для разделения компонент в рамках SSA, но там применяется метод ICA, который исходно был разработан для анализа многомерных данных [5, 6]. Здесь мы будем использовать метод AMUSE, предложенный для разделения случайных сигналов [5, 7, 8] и более подходящий для анализа временных рядов.
Опишем структуру работы. В разделе 1 кратко рассматриваются метод Basic SSA и понятия разделимости, связанные с ним. В разделе 2 описан предлагаемый метод SSA-AMUSE и проведено его обоснование. В разделе 3 доказываются утверждения относительно условий разделимости с помощью предлагаемого метода и приводятся примеры. В частности, результаты показывают, что метод SSA-AMUSE, в отличие от Basic SSA, разделяет гармонические компоненты независимо от значений амплитуды. В разделе 4 представлено численное сравнение методов SSA-AMUSE и DerivSSA на примере и показано преимущество первого.
В работе приведено обоснование алгоритма SSA-AMUSE, а также получены условия разделимости для нового метода. Кроме точной разделимости также рассмотрена асимптотическая разделимость при длине ряда, стремящейся к бесконечности. Применение условий разделимости продемонстрировано для случая двух гармоник. Было показано, что условия разделимости с помощью SSA-AMUSE не зависят от соотношения амплитуд гармоник, в то время как базовый метод SSA требует разных амплитуд для разделимости. На численном примере показано преимущество разработанного метода SSA-AMUSE по сравнению с существующим аналогом.
1. Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, 2001.
2. Golyandina N., Zhigljavsky A. Singular Spectrum Analysis for Time Series. Springer Briefs in Statistics. Springer, 2013.
3. Голяндина Н., Некруткин В., Степанов Д. Варианты метода «Гусеница»-SSA для анализа многомерных временных рядов // Труды II Международной конференции «Идентификация систем и задачи управления» SICPRO’03. Москва, 2003. C. 2139—2168.
4. Golyandina N., Shlemov A. Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series // Statistics and Its Interface. 2015. Vol. 8, N 3. P. 277—294.
5. Hyvarinen A., Karhunen J., Erkki O. Independent Component Analysis. John Wiley & Sons, Inc., 2001.
6. Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis // Neural Networks, IEEE Transactions. 1999. Vol. 10, N 3. P. 626—634.
7. Tong L., Liu R. et al. Indeterminacy and identifiability of blind identification // IEEE Transactions on Circuits and Systems. 1991. Vol. 38, N 5. P. 499—509.
8. Belouchrani A., Abed-Meraim K. et al. A blind source separation technique using second order statistics // IEEE Transactions on Signal Processing. 1997. Vol. 45, N 2. P. 434—444.
9. Usevich K. On signal and extraneous roots in Singular Spectrum Analysis // Stat. Interface. 2010. Vol. 3, N 3. P. 281-295.