Микроэкстракционное выделение нестероидных противовоспалительных лекарственных веществ из пищевых продуктов и биологических жидкостей с применением глубоких эвтектических растворителей
Принятые условные обозначения и сокращения 3
Введение 8
1. Обзор литературы 9
1.1. Нестероидные противовоспалительные препараты 9
1.2. Методы определения НПВП 15
1.2.1. Электрохимические методы определения НПВП 15
1.2.2. Спектральные методы определения НПВП 20
1.2.3. Гибридные методы определения НПВП 25
1.3. Глубокие эвтектические растворители 35
1.4. Заключение 39
1.5. Цель и задачи 40
2. Экспериментальная часть 41
2.1. Средства измерений и оборудование 41
2.2. Реактивы и материалы 42
2.3. Приготовление растворов 42
2.4. Отбор и подготовка проб печени 43
2.5. Методика определения НИВИ в пищевых продуктах (говяжья печень) 44
2.6. ИК-спектроскопия 45
2.7. Хроматографические условия 46
3. Обсуждение результатов 48
3.1. Оптимизация условий проведения схемы пробоподготовки 48
3.1.1. Подбор концентрации карбоната натрия 48
3.1.2. Влияние температуры и времени экстракции 50
3.1.3. Выбор кислоты для эвтектического растворителя 52
3.1.4. Влияние массы ментола 54
3.1.5. Влияние времени затвердевания ментола 55
3.2. Изучение мешающего влияния 55
3.3. Аналитические характеристики 57
3.4. Проверка правильности методом сравнения 59
Выводы 60
Благодарности 61
Список литературы 62
Нестероидные противовоспалительные препараты (НПВП) являются эффективными анальгезирующими, жаропонижающими и противовоспалительными препаратами. Данные препараты облегчают у больных воспаление, боль и лихорадку, что в свою очередь в совокупности с удобством применения и многообразием лекарственных форм определило их популярность не только в медицине, но и в ветеринарии. Известно, что НПВП могут улучшать качество мясной продукции - уменьшать количество съедобного жира и бледность. В то же время передозировка НПВП может привести к желудочно-кишечному кровотечению, язвам кишечника и почечной недостаточности. Употребление мясной продукции, содержащую остатки НПВП, которые накапливаются в мышечной ткани, молоке, печени и почках животных, может нанести вред человеческому организму. Таким образом важен контроль качества пищевой продукции на содержание НПВП.
Пищевые продукты отличаются сложной матрицей и переменным составом, что в свою очередь осложняет определение целевых аналитов в объекте анализа. Для извлечения аналитов из пищевых продуктов обычно применяют кислотную вытяжку или жидкостно-жидкостную экстракцию (ЖЖЭ). Однако данные методики не являются экспрессными и не удовлетворяют концепции “зеленой химии”, поскольку предполагают использование токсичных органических растворителей в большом количестве. В последнее время большую популярность приобрели глубокие эвтектические растворители (ГЭР).
Не так давно стало известно об образовании эвтектических смесей между ментолом и нестероидными противовоспалительными препаратами, а именно с ибупрофеном и флурбипрофеном. Авторы данных работ рассматривают данные смеси для разработки систем доставки лекарственных веществ, однако в аналитической практике данные ГЭР вызывают особый интерес для извлечения НПВП из объектов с сложной матрицей.
Целью настоящей работы является разработка эффективной схемы пробоподготовки для определения кетопрофена и диклофенака в пищевых продуктах, основанную на in-situобразовании эвтектической смеси и удовлетворяющую концепции “зеленой химии”.
1. В работе продемонстрирована возможность использования эвтектических смесей для экстракции НПВП из сложных матриц.
2. Показана возможность применения явления in-situобразования эвтектических смесей для экстракции кетопрофена и диклофенака из пищевых продуктов с последующим ВЭЖХ-МС/МС определением.
3. Разработана и оптимизирована схема извлечения НПВП из говяжьей печени с последующим ВЭЖХ-МС/МС детектированием.
4. Разработанная схема анализа проверена на реальных объектах. Правильность результатов подтверждена методом сравнения.
[1] Bally, M., Dendukuri, N., Rich, B., Nadeau, L., Helin-Salmivaara, A., Garbe, E., & Brophy, J. M. (2017). Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta¬analysis of individual patient data. BMJ, j1909.
[2] Knights, K. M., Mangoni, A. A., & Miners, J. O. (2010). Defining the COX inhibitor selectivity of NSAIDs: implications for understanding toxicity. Expert Review of Clinical Pharmacology, 3(6), 769-776.
[3] Auburn University course material. Jack DeRuiter, Principles of Drug Action 2, Fall 2002
[4] Каратеев А.Е. Что лучше для профилактики НПВП-гастропатии: коксибы или комбинация «традиционных» НПВП и гастропротектора? Русский медицинский журнал 2013; 13: 673-680.
[5] Шварц Г.Я. Фармакогенетические особенности метаболизма современных НПВП и риск гастротоксических осложнений. Лекарственные средства: прикладная фармакология и персонализированная фармакотерапия. 2010 1(1) 65-70.
[6] ShostakN.A., Klimenko A.A. “NONSTEROIDAL ANTI-INFLAMMATORY DRUGS: CURRENT ASPECTS OF THEIR USE”.
[7] Cryer B., Li C., Simon L.S. et al. GI-REASONS: a novel 6-month, prospective, randomized, open-label, blinded endpoint (PROBE) trial. Am J Gastroenterol. 2013 108(3) 392-400.
[8] Rostom A., Moayyedi P., Hunt R.; Canadian Association of Gastroenterology Consensus Group. Canadian consensus guidelines on long-term nonsteroidal antiinflammatory drug therapy and the need for gastroprotection: benefits versus risks. Aliment Pharmacol Ther 2009;29(5):481-96.
[9] Naylor RJ, Taylor AH, Knowles EJ, et al. Comparison of flunixin meglumine and meloxicam for post operative management of horses with strangulating small intestinal lesions. Equine Vet J. 2014; 46: 427- 434.
[10] Alcott CJ, Sponseller BA, Wong DM, et al. Clinical and immunomodulating effects of ketamine in horses with experimental endotoxemia. J Vet Intern Med. 2011; 25: 934- 943.
[11] van Pamel, E.; Daeseleire, E., A multiresidue liquid chromatographic/tandem mass spectrometric method for the detection and quantitation of 15 nonsteroidal anti-inflammatory drugs (NSAIDs) in bovine meat and milk. Anal. Bioanal. Chem. 2015, 407 (15), 4485-4494.
[12] Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union 2010, L15.
[13] Daneshgar, P., Norouzi, P., Ganjali, M., Dinarvand, R., & Moosavi-Movahedi, A. (2009). Determination of Diclofenac on a Dysprosium Nanowire- Modified Carbon Paste Electrode Accomplished in a Flow Injection System by Advanced Filtering. Sensors, 9(10), 7903-7918.
[14] Mostafavi, M., Yaftian, M. R., Piri, F., & Shayani-Jam, H. (2018). A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosensors and Bioelectronics.
[15] Arvand, M., & Hassannezhad, M. (2015). Square wave voltammetric determination of uric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics, 21(12), 3245-3256.
[16] Afzali, F., Rounaghi, G., Zavar, M. H. A., & Ashraf, N. (2015). Supramolecular 0- Cyclodextrin/Multi-walled Carbon Nanotube Paste Electrode for Amperometric Detection of Naproxen. Journal of The Electrochemical Society, 163(3), B56-B61.
[17] Gholivand, M. B., Malekzadeh, G., & Derakhshan, A. A. (2014). Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam. Sensors and Actuators B: Chemical, 201, 378-386.
[18] Loudiki, A., Hammani, H., Boumya, W., Lahrich, S., Farahi, A., Achak, M., ... ElMhammedi, M. A. (2016). Electrocatalytical effect of montmorillonite to oxidizing ibuprofen: Analytical application in river water and commercial tablets. Applied Clay Science, 123, 99-108.
[19] Beltagi, A. M. (2009). Utilization of a montmorillonite-Ca-modified carbon paste electrode for the stripping voltammetric determination of diflunisal in its pharmaceutical formulations and human blood. Journal of Applied Electrochemistry, 39(12), 2375-2384.
[20] Posac, J. (1995). Determination of aceclofenac using adsorptive stripping voltammetric techniques on conventional and surfactant chemically modified carbon paste electrodes. Talanta, 42(2), 293-304.
[21] Chethana, B. K., Basavanna, S., & Arthoba Naik, Y. (2012). Voltammetric Determination of Diclofenac Sodium Using Tyrosine-Modified Carbon Paste Electrode. Industrial & Engineering Chemistry Research, 51(31), 10287-10295.
[22] Fernandez-Llano, L., Blanco-Lopez, M. C., Lobo-Castanon, M. J., Miranda-Ordieres, A. J., & Tunon-Blanco, P. (2007). Determination of Diclofenac in Urine Samples by Molecularly- Imprinted Solid-Phase Extraction and Adsorptive Differential Pulse Voltammetry. Electroanalysis, 19(15), 1555-1561.
[23] Goyal, R. N., Chatterjee, S., & Agrawal, B. (2010). Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sensors and Actuators B: Chemical, 145(2), 743-748.
[24] De Carvalho, R. C., Betts, A. J., & Cassidy, J. F. (2020). Diclofenac determination using CeO2 nanoparticle modified screen-printed electrodes - a study of background correction. Microchemical Journal, 105258.
[25] Blanco-Lopez, M. C., Fernandez-Llano, L., Lobo-Castanon, M. J., Miranda-Ordieres, A. J., & Tunon-Blanco, P. (2004). Voltammetry of Diclofenac at Graphite, Carbon Composites, and Molecularly Imprinted Polymer-Composite Electrodes. Analytical Letters, 37(5), 915-927.
[26] Yilmaz, S., Uslu, B., & Ozkan, S. A. (2001). Anodic oxidation of etodolac and its square wave and differential pulse voltammetric determination in pharmaceuticals and human serum1 ☆. Talanta, 54(2), 351-360.
[27] Abd El-Hady, D., & Youssef, A. K. (2013). Hyphenation of ionic liquid albumin glassy carbon biosensor or protein label-free sensor with differential pulse stripping voltammetry for interaction studies of human serum albumin with fenoprofen enantiomers. Analytica Chimica Acta, 772, 68-74.
[28] Santhosh, P., Senthil Kumar, N., Renukadevi, M., Gopalan, A. I., Vasudevan, T., & Lee, K.- P. (2007). Enhanced Electrochemical Detection of Ketorolac Tromethamine at Polypyrrole Modified Glassy Carbon Electrode. Analytical Sciences, 23(4), 475-478.
[29] Gopu, G., Muralidharan, B., Vedhi, C., & Manisankar, P. (2011). Determination of three analgesics in pharmaceutical and urine sample on nano poly (3, 4-ethylenedioxythiophene) modified electrode. Ionics, 18(1-2), 231-239.
[30] Muralidharan, B., Gopu, G., Vedhi, C., & Manisankar, P. (2008). Voltammetric
determination of analgesics using a montmorillonite modified electrode. Applied Clay Science, 42(1-2), 206-213.
[31] Wang, C., Wang, Z., Guan, J., & Hu, X. (2006). Voltammetric Determination of Meloxicam in Pharmaceutical Formulation and Human Serum at Glassy Carbon Electrode Modified by Cysteic Acid Formed by Electrochemical Oxidation of L-cysteine. Sensors, 6(9), 1139-1152.
[32] Bukkitgar, S. D., Shetti, N. P., Kulkarni, R. M., & Doddamani, M. R. (2016). Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 762, 37-42.
[33] Afkhami, A., Bahiraei, A., & Madrakian, T. (2016). Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Materials Science and Engineering: C, 59, 168-176.
[34] Shaikh, T., uddin, S., Talpur, F. N., Khaskeli, A. R., Agheem, M. H., Shah, M. R., Siddiqui,
S. (2017). Ultrasensitive Determination of Piroxicam at Diflunisal-Derived Gold Nanoparticle- Modified Glassy Carbon Electrode. Journal of Electronic Materials, 46(10), 5957-5966.
[35] Wong, A., Santos, A. M., & Fatibello-Filho, O. (2017). Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS. Journal of Electroanalytical Chemistry, 799, 547-555.
[36] Babaei, A., Sohrabi, M., & Afrasiabi, M. (2012). A Sensitive Simultaneous Determination of Epinephrine and Piroxicam Using a Glassy Carbon Electrode Modified with a Nickel Hydroxide Nanoparticles/Multiwalled Carbon Nanotubes Composite. Electroanalysis, 24(12), 2387-2394.
[37] Sarhangzadeh, K., Khatami, A. A., Jabbari, M., & Bahari, S. (2013). Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. Journal of Applied Electrochemistry, 43(12), 1217-1224.
[38] Sturm, J. C., Canelo, H., Nunez-Vergara, L. J., & Squella, J. A. (1997). Voltammetric study of ketorolac and its differential pulse polarographic determination in pharmaceuticals. Talanta, 44(5), 931-937.
[39] Beltagi, A., El-Attar, M., & Ghoneim, E. (2007). Adsorptive stripping voltammetric determination of the anti-inflammatory drug tolmetin in bulk form, pharmaceutical formulation and human serum. Open Chemistry, 5(3).
[40] Ghoneim, M. (2003). Adsorptive stripping voltammetric determination of the anti-inflammatory drug celecoxib in pharmaceutical formulation and human serum. Talanta, 60(5), 911-921.
[41] Arkan, E., Karimi, Z., Shamsipur, M., & Saber, R. (2013). Electrochemical Determination of Celecoxib on a Graphene Based Carbon Ionic Liquid Electrode Modified with Gold Nanoparticles and Its Application to Pharmaceutical Analysis. Analytical Sciences, 29(8), 855¬860.
[42] Manea, F., Ihos, M., Remes, A., Burtica, G., & Schoonman, J. (2010). Electrochemical Determination of Diclofenac Sodium in Aqueous Solution on Cu-Doped Zeolite-Expanded Graphite-Epoxy Electrode. Electroanalysis, 22(17-18), 2058-2063.
[43] Agatonovic-Kustrin, S., Zivanovic, L., Zecevic, M., & Radulovic, D. (1997).
Spectrophotometric study of diclofenac-Fe(III) complex. Journal of Pharmaceutical and Biomedical Analysis, 16(1), 147-153.
[44] Jose R.M., Adela L., Marcela H. (2017). An improved micromethod for the determination of acetaminophen in plasma by visible spectrophotometry: application to a pharmacokinetic study in rabbits. International Journal of Applied Pharmaceutics, 9(4), 96-98.
[45] Khier, A. A., El-Sadek, M., & Baraka, M. (1987). Spectrophotometric method for the determination of flufenamic and mefenamic acids. The Analyst, 112(10), 1399.
[46] Alpdogan, G., & Sungur, S. (1999). Indirect Determination of some Analgesic-Inflammatory Drugs by AAS. Analytical Letters, 32(14), 2799-2808.
[47] El-Kommos, M. E., Mohamed, N. A., & Abdel Hakiem, A. F. (2013). Extractive
Spectrophotometric Determination of Some Nonsteroidal Anti-Inflammatory Drugs Using Methylene Blue. Journal of AOAC International, 96(4), 737-744.
[48] Damiani, P. C., Bearzotti, M., & Cabezon, M. A. (2001). Spectrofluorometric determination of ibuprofen in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 25(3-4), 679-683.
[49] Castillo, M. A., & Bruzzone, L. (2006). Indirect Fluorometric Determination of Diclofenac Sodium. Analytical Sciences, 22(3), 431-433.
[50] Zeeb, M., Tayebi Jamil, P., Berenjian, A., Ganjali, M., & Talei Bavil Olyai, M. (2013). Quantitative analysis of piroxicam using temperature-controlled ionic liquid dispersive liquid phase microextraction followed by stopped-flow injection spectrofluorimetry. DARU Journal of Pharmaceutical Sciences, 21(1), 63.
[51] Thomas, D., Lonappan, L., Rajith, L., Cyriac, S. T., & Girish Kumar, K. (2013). Quantum Dots (QDs) Based Fluorescent Sensor for the Selective Determination of Nimesulide. Journal of Fluorescence, 23(3), 473-478.
[52] Khoshayand, M. R., Abdollahi, H., Shariatpanahi, M., Saadatfard, A., & Mohammadi, A. (2008). Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(3), 491-499.
[53] Albayrak M., Demirkaya-Miloglu F., Senol O., & Polatdemir E. (2019) Design,
optimization, and validation of chemometrics-assisted spectrophotometric methods for simultaneous determination of etodolac and thiocolchicoside in pharmaceuticals. Journal of Analytical Science and Technology. 10:16. 1-8.
[54] Sun, Y., Takaba, K., Kido, H., Nakashima, M. N., & Nakashima, K. (2003). Simultaneous determination of arylpropionic acidic non-steroidal anti-inflammatory drugs in pharmaceutical formulations and human plasma by HPLC with UV detection. Journal of Pharmaceutical and Biomedical Analysis, 30(5), 1611-1619.
[55] Han, D.-G., Kim, K.-S., Seo, S.-W., Baek, Y. M., Jung, Y., Kim, D.-D., & Yoon, I.-S. (2020). A sensitive HPLC-FL method to simultaneously determine febuxostat and diclofenac in rat plasma: assessment of metabolic drug interactions in vitro and in vivo. Analytical Methods.
[56] Van Pamel, E., & Daeseleire, E. (2015). A multiresidue liquid chromatographic/tandem mass spectrometric method for the detection and quantitation of 15 nonsteroidal anti-inflammatory drugs (NSAIDs) in bovine meat and milk. Analytical and Bioanalytical Chemistry, 407(15), 4485-4494.
[57] Hong. J., Hur. J., Lee. W., Kim B.H., Kim H.J., Lee D.H., Lee J., Lee Y.M., Oh H.B. (2019). Comprehensive screening of multiclass illegal adulterants in herbal supplements and Spices using specific MS/MS fragmentations by UHPLC-Q/TOF-MS. Analytical methods. 1-39.
[58] Ghambarian, M., Tajabadi, F., Yamini, Y., Behbahani, M., Sobhi, H. R., & Esrafili, A. (2018). An efficient sample preparation method based on dispersive liquid-liquid microextraction associated with back extraction for trace determination of acidic pharmaceuticals. Arabian Journal of Chemistry.
[59] Hidalgo, C. R., Murillo, E. S., Payan, M. R., Petersen, N. J., Kutter, J. P., & Pedersen- Bjergaard, S. (2019). On-chip electromembrane extraction of acidic drugs. ELECTROPHORESIS.
[60] Waraksa, E., Wozniak, M. K., Banaszkiewicz, L., Klodzihska, E., Ozimek, M., Wrzesieh, R., Namiesnik, J. (2019). Quantification of unconjugated and total ibuprofen and its metabolites in equine urine samples by gas chromatography-tandem mass spectrometry: Application to the excretion study. Microchemical Journal, 150, 104129.
[61] Aranda-Merino, N., Ramos-Payan, M., Callejon-Mochon, M., Villar-Navarro, M., & Fernandez-Torres, R. (2020). Comparison of three electromembrane-based extraction systems for NSAIDs analysis in human urine samples. Analytical and Bioanalytical Chemistry.
[62] Medina, G. S., Acquaviva, A., & Reta, M. (2020). Development of monolithic sorbent cartridges (m-SPE) for the extraction of non-steroidal anti-inflammatory drugs from surface waters and their determination by HPLC. Microchemical Journal, 105447.
[63] Ghani, M., & Haghdoostnejad, K. (2019). Woven cotton yarn-graphene oxide-layered double hydroxide composite as a sorbent for thin film microextraction of nonsteroidal anti-inflammatory drugs followed by quantitation through high performance liquid chromatography. Analytica Chimica Acta.
[64] Seidi, S., & Sanati, S. E. (2019). Nickel-iron layered double hydroxide nanostructures for micro solid phase extraction of nonsteroidal anti-inflammatory drugs, followed by quantitation by HPLC-UV. Microchimica Acta, 186(5).
[65] Wang, Y., Jia, M., Wu, X., Wang, T., Wang, J., & Hou, X. (2018). PEG modified column MIL-101(Cr)/PVA cryogel as a sorbent in stir bar solid phase extraction for determination of non-steroidal anti-inflammatory drugs in water samples. Microchemical Journal.
[66] Amiri, A., Mirzaei, M., & Derakhshanrad, S. (2019). A nanohybrid composed of
polyoxotungstate and graphene oxide for dispersive micro solid-phase extraction of non-steroidal anti-inflammatory drugs prior to their quantitation by HPLC. Microchimica Acta, 186(8).
[67] Mohammad S.T., Nor S.M.H., Wan M.W.I., Nor’ashikin S., Noorfatimah Y. (2019) Alginate- Graphene Oxide Biocomposite Sorbent for Rapid and Selective Extraction of Non-Steroidal Anti-Inflammatory Drugs Using Micro-Solid Phase Extraction. Indones. J. Chem., 19(3), 684¬695.
[68] Goklas E.F., Kabil E., Arloz F. (2020) Quantification and validation of nine non-steroidal anti-inflammatory drugs in equine urine by gas chromatography mass spectrometry for doping control. Wiley, 12, 1065-1077.
[69] Wolecki, D., Caban, M., Pazdro, K., Mulkiewicz, E., Stepnowski, P., & Kumirska, J. (2019). Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels Mytilus edulis trossulus. Talanta.
[70] Milanetti, E., Carlucci, G., Olimpieri, P. P., Palumbo, P., Carlucci, M., & Ferrone, V. (2019). Correlation analysis based on the hydropathy properties of non-steroidal anti-inflammatory drugs in solid-phase extraction (SPE) and reversed-phase high performance liquid chromatography (HPLC) with photodiode array detection and their applications to biological samples. Journal of Chromatography A, 360351.
[71] Castilla-Fernandez, D., Moreno-Gonzalez, D., Beneilo-Cambra, M., & Molina-Diaz, A. (2019). Critical assessment of two sample treatment methods for multiresidue determination of veterinary drugs in milk by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry.
[72] Tartaglia, A., Kabir, A., D’Ambrosio, F., Ramundo, P., Ulusoy, S., Ulusoy, H. I., ... Locatelli, M. (2020). Fast off-line FPSE-HPLC-PDA determination of six NSAIDs in saliva samples. Journal of Chromatography B, 1144, 122082.
[73] Liang, S., Jian, N., Cao, J., Zhang, H., Li, J., Xu, Q., Wang, C. (2020) Rapid, Simple and Green Solid Phase Extraction based on Polyaniline Nanofibers-mat for Detecting Non-steroidal Antiinflammatory Drug Residues in Animal-origin food, Food Chemistry.
[74] Liu, H., Fan, H., Dang, S., Li, M., A, G., & Yu, H. (2020). A Zr-MOF@GO-Coated Fiber with High Specific Surface Areas for Efficient, Green, Long-Life Solid-Phase Microextraction of Nonsteroidal Anti-inflammatory Drugs in Water. Chromatographia.
[75] Mirzajani, R., Kardani, F., & Ramezani, Z. (2019). Preparation and characterization of magnetic metal-organic framework nanocomposite as solid-phase microextraction fibers coupled with high-performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in biological fluids and tablet formulation samples. Microchemical Journal, 144, 270-284.
[76] Ganesan, T., Mukhtar, N. H., Lim, H. N., & See, H. H. (2020). Mixed Matrix Membrane Tip Extraction Coupled with UPLC-MS/MS for the Monitoring of Nonsteroidal Anti-Inflammatory Drugs in Water Samples. Separations, 7(1), 19.
[77] Zeinali, S., Maleki, M., & Bagheri, H. (2019). Amine modified magnetic polystyrene for extraction of drugs from urine samples. Journal of Chromatography A.
[78] Fresco-Cala B., Galvez-Vergara A., Cardenas S. (2020). Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine-modified carbon nanotubes for the determination of anti-inflammatory drugs in urine samples. Talanta, 218, 121124.
[79] Abdullah, U. A. A. U., Hanapi, N. S. M., Ibrahim, W. N. W., Azhar, S. S., Ishak, N. S., & Hamid, R. D. (2019). Rapid Magnetic Solid-Phase Extraction Based on Graphene Oxide/Magnetite Nanoparticles for the Determination of Non-Steroidal Anti-Inflammatory Drugs and Bisphenol-A in Tap Water. Asian Journal of Chemistry, 31(6), 1294-1300.
[80] Wang, Y., Ou, Y., Xie, S., Chen, D., Wang, X., Pan, Y., Yuan, Z. (2019). Magnetic Graphene Solid-Phase Extraction for the Determination of 47 Kinds of Non-steroidal Anti-inflammatory Drug Residues in Animal Food with Liquid Chromatography Tandem Mass Spectrometry. Food Analytical Methods, 12(6), 1346-1368.
[81] Li, N., Chen, J., & Shi, Y.-P. (2018). Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic sorbent for the separation of polar non-steroidal anti¬inflammatory drugs in waters. Talanta.
[82] Yilmaz, E., Salem, S., Sarp, G., Aydin, S., Sahin, K., Korkmaz, I., & Yuvali, D. (2020). TiO2 nanoparticles and C-Nanofibers modified magnetic Fe3O4 nanospheres (TiO2@Fe3O4@C- NF): A multifunctional hybrid material for magnetic solid-phase extraction of ibuprofen and photocatalytic degradation of drug molecules and azo dye. Talanta, 120813.
[83] Han, X., Chen, J., Li, Z., & Qiu, H. (2019). Combustion fabrication of magnetic porous carbon as a novel magnetic solid-phase extraction adsorbent for the determination of non-steroidal anti-inflammatory drugs. Analytica Chimica Acta.
[84] Liu, S., Li, S., Yang, W., Gu, F., Xu, H., Wang, T., Hou, X. (2018). Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs. Talanta.
[85] Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jerome (2012) Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41, 7108-7146.
[86] E. Habibi, K. Ghanemi, M. Fallah-Mehrjardi, A. Dadolahi-Sohrab. (2013) A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples, Anal. Chim. Acta 762, 61-67.
[87] Shishov, A., Pochivalov, A., Nugbienyo, L., Andruch, V., & Bulatov, A. (2020). Deep eutectic solvents are not only effective extractants. TrAC Trends in Analytical Chemistry, 115956.
[88] A.P. Abbott, J.C. Barron, G. Frisch, K.S. Ryder, A.F. Silva, The effect of additives on zinc electrodeposition from deep eutectic solvents, Electrochim. Acta 56 (2011) 5272-5279.
[89] P.M. Pawar, K.J. Jarag, G.S. Shankarling, Environmentally benign and energy efficient methodology for condensation: an interesting facet to the classical Perkin reaction, Green Chem. 13 (2011) 2130.
[90] A. Hayyan, M.A. Hashim, M. Hayyan, F.S. Mjalli, I.M. AlNashef, A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent, J. Clean. Prod. 65 (2014) 246-251.
[91] Y. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L, Anal. Chem. 85 (2013) 6272-6278.
[92] T. Gu, M. Zhang, T. Tan, J. Chen, Z. Li, Q. Zhang, H. Qiu, Deep eutectic solvents as novel extraction media for phenolic compounds from model oil, Chem. Commun. 50 (2014) 11749-11752.
[93] M.B. Arain, E. Yilmaz, M. Soylak “Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt” J. Mol. Liq., 224 (2016), pp. 538¬543.
[94] Shishov, A., Volodina, N., Nechaeva, D., Gagarinova, S., Bulatov, A. “An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages”. Microchemical Journal 144, с. 469-473.
[95] E. Yilmaz, M. Soylak. “A novel and simple deep eutectic solvent based liquid phase microextraction method for rhodamine B in cosmetic products and water samples prior to its spectrophotometric determination” Spectrochimica Acta 202 ,81-86.
[96] C. Yao, Y. Hou, S. Ren, W. Wu, Y. Ji, H. Liu, Sulfonate based zwitterions: A new class of extractants for separating phenols from oils with high efficiency via forming deep eutectic solvents, Fuel Process. Technol. 178 (2018) 206-212.
[97] Bezold, F., Minceva, M. “A water-free solvent system containing an L-menthol-based deepeutectic solvent for centrifugal partition chromatography applications”.Journal ofChromatography A 1587, с. 166-171.
[98] Van Osch, D.J.G.P., Dietz, C.H.J.T.,Van Spronsen, Van Sint Annaland, M.,Tuinier. “ASearch for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components”.ACSSustainable Chemistry and Engineering 7(3), с. 2933-2942.
[99] Aroso, I. M., Craveiro, R., Rocha, A., Dionisio, M., Barreiros, S., Reis, R. L., Paiva, A., Duarte, A. R. C. Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int. J. Pharm. 2015, 492 (1-2), 73-79.
[100] Shishov, A.Y., Chislov, M.V., Nechaeva, D.V., Moskvin, L.N., Bulatov, A.V. “A new approach for microextraction of non-steroidal anti-inflammatory drugs from human urine samples based on in-situ deep eutectic mixture formation”. Journal of Molecular Liquids 272, с. 738-745.
[101] Sorouraddin, S. M., Farajzadeh, M. A., & Dastoori, H. (2019). Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of heavy metals from milk samples. Talanta, 120485.
[102] Rastegarifard, F., Ghanemi, K., & Fallah-Mehrjardi, M. (2017). A deep eutectic solvent¬based extraction method for fast determination of Hg in marine fish samples by cold vapor atomic absorption spectrometry. Anal. Methods, 9(39), 5741-5748.
[103] Shishov, A., Nechaeva, D., Bulatov, A. (2019). HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on simultaneous deep eutectic solvents formation and its solidification. Microchemical Journal, 150, 104080.
[104] C. Igualada, F. Moragues, J. Pitarch. Rapid method for the determination of nonsteroidal anti-inflammatory drugs in animal tissue by liquid chromatography-mass spectrometry with ion¬trap detector, Anal. Chim. Acta 586 (2007) 432-439.