Тип работы:
Предмет:
Язык работы:


Микроэкстракционное выделение сульфаниламидов для их последующего хроматографического определения в биологических жидкостях

Работа №128013

Тип работы

Магистерская диссертация

Предмет

химия

Объем работы87
Год сдачи2021
Стоимость4915 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
22
Не подходит работа?

Узнай цену на написание


Введение 5
Глава 1. Обзор литературы 6
1.1 Современные тенденции развития методов пробоподготовки 6
1.1.1 Капельная микроэкстракция 7
1.1.2 Мембранная жидкостная микроэкстракция 10
1.1.3 Дисперсионная жидкостная микроэкстракция 12
1.1.4 Гомогенная жидкостная микроэкстракция 13
1.2 Супрамолекулярные экстракционные системы 15
1.2.1 Применение супрамолекулярных экстракционных систем в анализе
биологических жидкостей 22
1.3 Биофармацевтический анализ 29
1.4 Сульфаниламиды и методы их определения 34
Заключение 43
Глава 2. Экспериментальная часть 44
2.1 Оборудование 44
2.2 Реактивы и материалы 45
2.3 Приготовление растворов 45
2.4 Отбор и подготовка проб биологических жидкостей 46
Глава 3. Обсуждение результатов 47
3.1 Теоретическое обоснование метода пробоподготовки 47
3.2 Схема определения сульфаниламидов в биологических жидкостях 49
3.3 Оптимизация параметров, влияющих на эффективность извлечения
сульфаниламидов 50
3.3.1 Выбор метода анализа 50
3.3.2 Выбор оптимальной подвижной фазы 51
3.3.3 Выбор оптимального экстрагента 52
3.3.4 Влияние объема экстрагента 54
3.3.5 Выбор агента коацервации 55
3.3.6 Выбор оптимального количества агента коацервации 55
3.3.7 Выбор оптимального объема раствора пробы 56
3.4 Исследование физических характеристик фаз 57
3.5 Определение состава фаз супрамолекулярной экстракционной системы 59
3.6 Аналитические характеристики разработанной схемы анализа 61
3.7 Анализ реальных объектов разработанным и референтным методом 63
Список достижений по итогам исследований 67
Выводы 69
Благодарности 70
Список литературы 71

Внедрение концепции персонализированной медицины в клиническую практику требует решения проблемы точного и надежного анализа биологических жидкостей и определения в них содержания лекарственных веществ, их метаболитов, биомаркеров, гормонов, высокомолекулярных соединений с целью выбора правильной схемы лечения конкретного пациента, минимизации побочных реакций и летальных исходов. Сложный химический состав биологических жидкостей делает их прямой инструментальный анализ невозможным и требует включения обязательной стадии пробоподготовки, направленной на устранение матричных эффектов и концентрирования целевых аналитов. Классические методы жидкостной и твердофазной экстракции усложнены использованием больших объемов токсических органических растворителей и трудоемкостью самих процедур извлечения аналитов. Наиболее перспективными представляются микроэкстракционные методы, проводимые с использованием экологически безопасных экстрагентов.
Целью данного исследования была разработка способа микроэкстракционного извлечения сульфаниламидов в in situгенерируемую мицеллярную фазу первичного амина для последующего определения аналитов в биологических жидкостях методом высокоэффективной жидкостной хроматографии с ультрафиолетовым детектированием (ВЭЖХ-УФ).
Для достижения поставленной цели требовалось решить следующие задачи: оценить возможность применения первичных аминов в качестве экстрагентов для извлечения антибиотиков сульфаниламидового ряда; выявить условия выделения мицеллярной фазы амина; оптимизировать условия проведения микроэкстракции; разработать схему анализа, апробировать ее на реальных образцах и проверить правильность полученных результатов референтным методом.


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


1. Обнаружена и исследована новая супрамолекулярная экстракционная система на основе первичных аминов с применением монотерпеновых веществ в качестве агентов коацервации;
2. Найдены оптимальные условия микроэкстракционного выделения сульфаниламидов в мицеллярную фазу, обогащенную первичным амином (тип и объем экстрагента, количество агента коацервации, объем раствора пробы), для достижения максимальной степени извлечения антибиотиков;
3. Разработан способ ВЭЖХ-УФ определения сульфаниламидов в биологических жидкостях человека. Предел обнаружения составил 20 мкг/л для сульфаметоксазола, сульфаметазина и сульфапиридина;
4. Разработанный способ апробирован на реальных пробах плазмы и сыворотки крови человека; правильность полученных результатов подтверждена референтным методом.



1. Armenta S. et al. Green analytical chemistry // TrAC Trends in Analytical Chemistry. 2008. Vol. 27. P. 497-511.
2. Plastiras O. et al. Microextraction techniques with deep eutectic solvents // Molecules. 2020. Vol. 25. P. 6026.
3. Billiard K. et al. Implementing green analytical methodologies using solid-phase microextraction: A Review // Molecules. 2020. Vol. 25. P. 5297.
4. Золотов Ю.А. Миниатюризация химического анализа // Журнал аналитической химии. 2014. Т. 69. С. 3.
5. Ganzler K. et al. Microwave extraction // Journal of Chromatography A. 1986. Vol. 371. P. 299-306.
6. Pastor A. et al. Efficiency of the microwave-assisted extraction of hydrocarbons and pesticides from sediments // Analytica Chimica Acta. 1997. Vol. 344. P. 241-249.
7. Brignole E. Supercritical fluid extraction // Fluid Phase Equilibria. 1986. Vol. 29. P. 133-144.
8. Hedrick J. et al. Supercritical fluid extraction // Microchimica Acta. 1992. Vol. 108. P. 115-132.
9. Ramos L. et al. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis // Journal of Chromatography A. 2002. Vol. 975. P. 3¬29.
10. Arthur C. et al. Environmental analysis of organic compounds in water using solid phase micro extraction // Journal of High Resolution Chromatography. 1992. Vol. 15. P. 741¬744.
11. Plotka-Wasylka, J. et al. Miniaturized solid-phase extraction techniques // TrAC Trends in Analytical Chemistry. 2015. Vol. 73. P. 19-38.
12. Liu H. and Dasgupta P. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop // Analytical Chemistry. 1996. Vol. 68. P. 1817-1821.
13. Pena-Pereira F. et al. Liquid-phase microextraction techniques within the framework of green chemistry // TrAC Trends in Analytical Chemistry. 2010. Vol. 29. P. 617-628.
14. Yamini Y. et al. Liquid-phase microextraction - The different principles and configurations // TrAC Trends in Analytical Chemistry. 2018. Vol. 112. P. 264-272.
15. Andruch V. et al. Recent advances in coupling single-drop and dispersive liquid¬liquid microextraction with UV-vis spectrophotometry and related detection techniques // Microchemical Journal. 2012. Vol. 102. P. 1-10.
16. Choi K. et al. Single-drop microextraction in bioanalysis // Bioanalysis. 2011. Vol. 3. P. 799-815.
17. Kailasa S. et al. Applications of single-drop microextraction in analytical chemistry: A review // Trends in Environmental Analytical Chemistry. 2020. Vol. 29. Article e00113.
18. Tang S. et al. Single-drop microextraction // TrAC Trends in Analytical Chemistry. 2018. Vol. 108. P. 306-313.
19. Chimuka L. et al. Advances in sample preparation using membrane-based liquid¬phase microextraction techniques // TrAC Trends in Analytical Chemistry. 2011. Vol. 30. P. 1781-1792.
20. Tabani H. et al. Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis // Journal of Pharmaceutical and Biomedical Analysis. 2018. Vol. 160. P. 244-267.
21. Carasek E. and Merib J. Membrane-based microextraction techniques in analytical chemistry: A review // Analytica Chimica Acta. 2015. Vol. 880. P. 8-25.
22. Дмитриенко С.Г. и др. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журнал аналитической химии. 2020. Том 75. С. 867-884.
23. Anthemidis A. and Ioannou K.-I. Recent developments in homogeneous and dispersive liquid-liquid extraction for inorganic elements determination. A review // Talanta. 2009. Vol. 80. P. 413-421.
24. Pacheco-Fernandez I. et al. Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media - A review // Analytica Chimica Acta. 2020. Vol. 1143. P. 225-249.
25. Saraji M. and Boroujeni M. Recent developments in dispersive liquid-liquid microextraction // Analytical and Bioanalytical Chemistry. 2013. Vol. 406. P. 2027-2066.
26. Dmitrienko S. et al. Homogeneous liquid-liquid microextraction of organic compounds // Journal of Analytical Chemistry. 2020. Vol. 75. P. 1371-1383.
27. Liu S. and Dasgupta P. Liquid droplet. A renewable gas sampling interface // Analytical Chemistry. 1995. Vol. 67. P. 2042-2049.
28. Jeannot M. and Cantwell F. Solvent microextraction into a single drop // Analytical Chemistry. 1996. Vol. 68. P. 2236-2240.
29. Wu H. et al. Combining drop-to-drop solvent microextraction with gas chromatography/mass spectrometry using electronic ionization and self-ion/molecule reaction method to determine methoxyacetophenone isomers in one drop of water // Analytical Chemistry. 2006. Vol. 78. P. 1707-1712.
30. Agrawal K. and Wu H. Drop-to-drop solvent microextraction coupled with gas chromatography/mass spectrometry for rapid determination of trimeprazine in urine and blood of rats: application to pharmacokinetic studies // Rapid Communications in Mass Spectrometry. 2007. Vol. 21. P. 3352-3356
31. Petersen N. et al. Drop-to-drop microextraction across a supported liquid membrane by an electrical field under stagnant conditions // J. Chromatogr. A. 2009. V 1216. P.1496-1502.
32. Shrivas K. and Wu H. Rapid determination of caffeine in one drop of beverages and foods using drop-to-drop solvent microextraction with gas chromatography/mass spectrometry // J. Chromatogr. A. 2007. V. 1170 P. 9-14.
33. Liu W. and Lee H. Continuous-Flow Microextraction Exceeding1000-Fold Concentration of Dilute Analytes // Analytical Chemistry. 2000. Vol. 72. P. 4462-4467.
34. Liu Y. et al. Continuous-flow microextraction and gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbon compounds in water // Anal. Chim. Acta. 2007. Vol. 585 P. 294-299.
35. Przyjazny A. and Kokosa J. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction // J. Chromatogr. A. 2002. Vol. 977 P. 143-153.
36. Theis A. et al. Headspace solvent microextraction // Anal. Chem. 2001. Vol. 73. P. 5651-5654.
37. Тимофеева И.И. и др. Спектрофотометрическое определение ионов аммония в бетонных смесях и бетонах // Аналитика и контроль. 2014. Т. 18. С. 188-196.
38. Ma M. and Cantwell F. Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop // Analytical Chemistry. 1999. Vol. 71. P. 388-393.
39. Jeannot M. and Cantwell F. Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle // Analytical Chemistry. 1997. Vol. 69. P. 235¬239.
40. Hou L. and Lee, H. Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons // Journal of Chromatography A. 2002. Vol. 976. P. 377-385.
41. Pedersen-Bjergaard S. and Rasmussen K. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis // Analytical Chemistry. 1999. Vol. 71. P. 2650-2656.
42. Madikizela L. et al. Application of hollow fibre-liquid phase microextraction technique for isolation and pre-concentration of pharmaceuticals in water // Membranes. 2020. Vol. 10. Article 311.
43. Ghambarian M. et al. Three-phase hollow fiber microextraction based on two immiscible organic solvents for determination of tricyclic antidepressant drugs: Comparison with conventional three-phase hollow fiber microextraction // Journal of Chromatography A. 2012. Vol. 1222. P. 5-12.
44. Khan W. et al. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals // Journal of Pharmaceutical Analysis. 2019. Vol. 10. P. 109-122.
45. Esrafili A. et al. Two-phase hollow fiber liquid-phase microextraction // TrAC Trends in Analytical Chemistry. 2018. Vol. 108. P. 314-322.
46. Cai J. et al. Hollow fiber based liquid phase microextraction for the determination of organochlorine pesticides in ecological textiles by gas chromatography-mass spectrometry // Talanta. 2016. Vol. 146. P. 375-380.
47. Demirci A. and Alver E. Determination of polycyclic aromatic hydrocarbons in cigarette filter tar by means of hollow-fiber liquid phase microextraction-HPLC-UV system. // Journal of Liquid Chromatography and Related Technologies. 2012. Vol. 36. P. 628-647.
48. Sanagi M. et al. Determination of polycyclic aromatic hydrocarbons in fresh milk by hollow fiber liquid-phase microextraction-gas chromatography mass spectrometry // Journal of Chromatographic Science. 2012. Vol. 51. P. 112-116.
49. Mofidi Z. et al. Simultaneous extraction and determination of trace amounts of diclofenac from whole blood using supported liquid membrane microextraction and fast Fourier transform voltammetry // Journal of Separation Science. 2018. Vol. 41. P. 1644-1650.
50. Rasmussen K. et al. Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography // Journal of Chromatography A. 2000. Vol. 873. P. 3-11.
51. Shen G. et al. Hollow fiber-protected liquid-phase microextraction of triazine herbicides // Analytical Chemistry. 2002. Vol. 74. P. 648-654.
52. Esrafili A. et al. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids // Analytica Chimica Acta. 2007. Vol. 604. P. 127¬133.
53. Payan, M. et al. Hollow fiber-based liquid phase microextraction (HF-LPME) as a new approach for the HPLC determination of fluoroquinolones in biological and environmental matrices // Journal of Pharmaceutical and Biomedical Analysis. 2011. Vol. 55. P. 332-341.
54. Payan, M. et al. Hollow fiber-based liquid phase microextraction (HF-LPME) for a highly sensitive HPLC determination of sulfonamides and their main metabolites // Journal of Chromatography B. 2011. Vol. 879. P. 197-204.
55. Liu M. et al. Determination of estrogens in wastewater using three-phase hollow fiber-mediated liquid-phase microextraction followed by HPLC // Journal of Separation Science. 2008. Vol. 31. P. 622-628.
56. Wen X. et al. Two-step liquid-liquid-liquid microextraction of nonsteroidal antiinflammatory drugs in wastewater // Analytical Chemistry. 2004. Vol. 76. P. 228-232.
57. Poliwoda A. et al. Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples. Journal of Chromatography A. 2010. Vol. 1217. P. 3590-3597.
58. Larsson E. et al. Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry // Science of The Total Environment. 2014. Vol. 485-486. P. 300-308.
59. Yamini Y. et al. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier // Journal of Chromatography A. 2006. Vol. 1124. P. 57-67.
60. Navarro M. et al. Capillary electrophoresis determination of nonsteroidal anti-inflammatory drugs in wastewater using hollow fiber liquid-phase microextraction // Electrophoresis. 2011. Vol. 32. P. 2107-2113.
61. Rezaee M. et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction // Journal of Chromatography A. 2006. Vol. 1116. P. 1-9.
62. Rezaee, M. et al. Evolution of dispersive liquid-liquid microextraction method // Journal of Chromatography A. 2010. Vol. 1217. P. 2342-2357.
63. Chen K. et al. Determination of macrolide antibiotics using dispersive liquid-liquid microextraction followed by surface-assisted laser desorption/ionization mass spectrometry // J. Am. Soc. Mass Spectrom. 2012. Vol. 23. P. 1157-1160.
64. Hatami M. et al. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine // Journal of Separation Science. 2011. Vol. 34, P. 2933-2939.
65. Kokya T. and Farhadi K. Optimization of dispersive liquid-liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy // Journal of Hazardous Materials. 2009. Vol. 169. P. 726-733.
66. Tabrizi A. Development of a dispersive liquid-liquid microextraction method for iron speciation and determination in different water samples // Journal of Hazardous Materials. 2010. Vol. 183. P. 688-693.
67. Kiarostami V. et al. Binary solvents dispersive liquid—liquid microextraction (BS- DLLME) method for determination of tramadol in urine using high-performance liquid chromatography // DARU-Journal of Pharmaceutical Sciences. 2014. Vol. 22. Article 25.
68. Zhou Q. et al. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry // Journal of Hazardous Materials. 2011. Vol. 189. P. 48-53.
69. Cheng J. et al. Application of dispersive liquid-liquid microextraction and reversed phase-high performance liquid chromatography for the determination of two fungicides in environmental water samples // International Journal of Environmental Analytical Chemistry. 2010. Vol. 90. P. 845-855.
70. Berijani S. et al. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection // Journal of Chromatography A. 2006. Vol. 1123. P. 1-9.
71. Regueiro J. et al. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters // Journal of Chromatography A. 2008. Vol. 1190. P. 27-38.
72. Ozcan S. et al. Determination of selected polychlorinated biphenyls in water samples by ultrasound-assisted emulsification-microextraction and gas chromatography-mass-selective detection // Analytica Chimica Acta. 2009. Vol. 647. P. 182-188.
73. Kotowska U. et al. Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification-microextraction followed by GC-MS // Environmental Science and Pollution Research. 2013. Vol. 21. P. 660-673.
74. Yiantzi E. et al. Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A // Talanta. 2010. Vol. 80. P. 2057-2062.
75. Ali J. et al. Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: multivariate techniques // Food Chemistry. 2020. Vol. 344. Article 128706.
76. Ge D. et al. Preparation of a new polymeric deep eutectic solvent and its application in vortex-assisted liquid-liquid microextraction of parabens in foods, cosmetics and pharmaceutical products // Journal of the Brazilian Chemical Society. 2020. Vol. 31. P. 2120¬2128.
77. Farajzadeh M. and Mogaddam M. Air-assisted liquid-liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection // Analytica Chimica Acta. 2012. Vol. 728. P. 31-38.
78. Karami-Osboo R. and Maham M. Pre-concentration and extraction of aflatoxins from rice using air-assisted dispersive liquid-liquid microextraction // Food Analytical Methods. 2018. Vol. 11. P. 2816-2821.
79. Wang L. et al. Application of air-assisted liquid-liquid microextraction for determination of some fluoroquinolones in milk powder and egg samples: comparison with conventional dispersive liquid-liquid microextraction // Food Analytical Methods. 2016. Vol. 9. P. 2223-2230.
80. Liu J. et al. Miniaturized salting-out liquid-liquid extraction of sulfonamides from different matrices // Analytica Chimica Acta. 2010. Vol. 679. P. 74-80.
81. Sheijooni-Fumani N. et al. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection // Journal of Separation Science. 2011. Vol. 34. P. 1333-1337.
82. Farajzadeh M. et al. Development of salt-induced homogenous liquid-liquid microextraction based on iso-propanol/sodium sulfate system for extraction of some pesticides in fruit juices // Food Analytical Methods. 2018. Vol. 11. P. 2497-2507.
83. Timofeeva, I. et al. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices // Talanta. 2017. Vol. 167. P. 761-767.
84. Tu X. et al. Sugaring-out assisted liquid-liquid extraction combined with high- performance liquid chromatography-fluorescence detection for the determination of bisphenol A and bisphenol B in royal jelly // Food Analytical Methods. 2018. Vol. 12. P. 705¬711.
85. Nugbienyo L. et al. Automated sugaring-out liquid-liquid extraction based on flow system coupled with HPLC-UV for the determination of procainamide in urine // Talanta. 2017. Vol. 167. P. 709-713.
86. Shamsipur M. and Hassan J. A novel miniaturized homogenous liquid-liquid solvent extraction-high performance liquid chromatographic-fluorescence method for determination of ultra traces of polycyclic aromatic hydrocarbons in sediment samples // Journal of Chromatography A. 2010. Vol. 1217. P. 4877-4882.
87. Zhang H. et al. Determination of five anthraquinone derivatives in sticky traditional chinese patent medicines by subzero-temperature liquid-liquid extraction combined with high-performance liquid chromatography // Journal of Liquid Chromatography and Related Technologies. 2015. Vol. 38. P. 584-590.
88. Shi Z. et al. Subzero-temperature liquid-liquid extraction coupled with UPLC- MS-MS for the simultaneous determination of 12 bioactive components in traditional chinese medicine gegen-qinlian decoction // Journal of Chromatographic Science. 2015. Vol. 53. P. 1407-1413.
89. Sorouraddin S. et al. Development of a new method for extraction and preconcentration of cadmium and zinc ions in edible oils based on heat-induced homogeneous liquid-liquid microextraction // Journal of the Iranian Chemical Society. 2019. Vol. 16. P. 1537-1543.
90. Vander Hoogerstraete T. et al. Homogeneous liquid-liquid extraction of metal ions with a functionalized ionic liquid // The Journal of Physical Chemistry Letters. 2013. Vol. 4. P. 1659-1663.
91. Ebrahimpour B. and Yamini Y. Homogeneous liquid-phase microextraction followed by filtration-based phase separation coupled to high-performance liquid chromatography // Journal of Separation Science. 2014. Vol. 37. P. 2002-2009.
92. Ebrahimpour B. et al. Acid-induced homogenous liquid-phase microextraction: Application of medium-chain carboxylic acid as extraction phase // Journal of Separation Science. 2013. Vol. 36. P. 1493-1499.
93. Farajzadeh M. et al. Development of a simple and efficient pretreatment technique named pH-dependent continuous homogenous liquid-liquid extraction // Analytical Methods. 2016. Vol. 8. P. 5676-5683.
94. Marcinkowska R. et al. Application of ionic liquids in microextraction techniques: current trends and future perspectives // Trends Anal. Chem. 2019. Vol. 119. P. 115614¬115633.
95. Hosseini M. et al. A new mode of homogeneous liquid-liquid microextraction (HLLME) based on ionic liquids: in situ solvent formation microextraction (ISFME) for determination of lead // Journal of the Chinese Chemical Society. 2012. Vol. 59. P. 872-878.
96. You X. et al. Ionic liquid-based air-assisted liquid-liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples // Food Chemistry. 2018. Vol. 239. P. 354-359.
97. Shishov A. et al. Application of deep eutectic solvents in analytical chemistry, A review // Microchem. J. 2017. Vol. 135 P. 33-38.
98. Ge D. et al. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples // Journal of Separation Science. 2018. Vol. 41. P. 1635-1643.
99. Makos, P. et al. Hydrophobic deep eutectic solvents in microextraction techniques- a review // Microchemical Journal. 2019. Vol. 152. Article 104384.
100. Sivrikaya S. A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV // Food Additives and Contaminants: Part A. 2020. Vol. 37. P. 488-495.
101. Plastiras O.-E. et al. Microextraction techniques with deep eutectic solvents // Molecules. 2020. Vol. 25. Article 6026.
102. Rezaee M. et al. Supercritical fluid extraction combined with dispersive liquid¬liquid microextraction as a sensitive and efficient sample preparation method for determination of organic compounds in solid samples // J. Supercrit. Fluids. 2010. Vol. 55. P. 161-168.
103. Lasarte-Aragones G. et al. Use of switchable hydrophilicity solvents for the homogeneous liquid-liquid microextraction of triazine herbicides from environmental water samples // Journal of Separation Science. 2015. Vol. 38. P. 990-995.
104. Vakh C. et al. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples // Anal. Chim. Acta. 2016. Vol. 907. P. 54-59.
105. Bungenberg de Jong H. and Kruyt H. Kolloid Coacervation (Partial miscibility in colloid systems) // Proceedings of the Section of Sciences, Kon. Akad. v. Wetenschappen, Amsterdam. 1929. Vol. 32. P. 849-856.
106. Rubio S. and Perez-Bendito D. Supramolecular assemblies for extracting organic compounds // TrAC Trends in Analytical Chemistry. 2003. Vol. 22. P. 470-485.
107. Ballesteros-Gomez A. et al. Potential of supramolecular solvents for the extraction of contaminants in liquid foods // Journal of Chromatography A. 2009. Vol. 1216. P. 530-539.
108. Ballesteros-Gomez A. et al. Supramolecular solvents in the extraction of organic compounds. A review // Analytica Chimica Acta. 2010. Vol. 677. P. 108-130.
109. Штыков С. Н. Наноаналитика: проблемы концепции и метрологии // Вестник Нижегородского университета им. Н.И. Лобачевского. 2013. Т. 5. С. 55-60.
110. Штыков С. Н. и др. Мицеллы и микроэмульсии в разделении и концентрировании // Журнал аналитической химии. 2003. Т. 58. С. 732-733.
111. Штыков С. Н. Организованные среды - мир жидких наносистем // Природа. 2009. Т. 7. С. 12-20.
112. Scheel G. and Tarley C. Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC-DAD // Microchemical Journal. 2017. Vol. 133. P. 650-657.
113. Aydin F. et al. Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett-Burman and central composite experimental design // RSC Advances. 2015. Vol. 5. P. 94879-94886.
114. Rezaei F. et al. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines // Analytica Chimica Acta. 2013. Vol. 804. P. 135-142.
115. Shamsipur M. et al. Application of a supramolecular solvent as the carrier for ferrofluid based liquid-phase microextraction for spectrofluorimetric determination of levofloxacin in biological samples // Analytical Methods. 2015. Vol. 7. P. 9609-9614.
116. Lombardo D. et al. Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches // Advances in Condensed Matter Physics. 2015. Vol. 2015. Article 151683.
117. Ruiz F. et al. Tetrabutylammonium-induced coacervation in vesicular solutions of alkyl carboxylic acids for the extraction of organic compounds // Anal. Chem. 2006. Vol. 78. P. 7229-7239.
118. Ballesteros-Gomez A. et al. Multifunctional vesicular coacervates as engineered supramolecular solvents for wastewater treatment // Chemosphere. 2019. Vol. 223. P. 569¬576.
119. Taechangam P. et al. Effect of nonionic surfactant molecular structure on cloud point extraction of phenol from wastewater // Colloids Surf., A. 2009. Vol. 347. P. 200-209.
120. Casero I. et al. An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds // Anal. Chem. 1999. Vol. 71. P. 4519-4526.


Работу высылаем на протяжении 30 минут после оплаты.




©2025 Cервис помощи студентам в выполнении работ