Введение 3
Постановка задачи 5
Обзор литературы 6
Искусственные нейронные сети 8
Нейронные сети в медицине 11
Проблемы и ограничения 12
Применение сверточных нейронных сетей 14
Оценка точности 15
Набор данных 16
VGG16 17
ResNet 20
Преобразование VGG16 26
Выводы 32
Заключение 33
Список литературы 34
С самого появления компьютеров люди стараются переложить на них решение как можно большего количества задач. В медицинской диагностике одной из самых главных и сложных задач является правильная постановка диагноза. От неё зависит всё дальнейшее лечение. Конечно, эту задачу также пытаются автоматизировать для минимизации влияния человеческого фактора. Ведь он может быть как положительным (например, большой опыт врача, полученный за долгие годы практики), так и отрицательным (например, плохое самочувствие).
Хотя на данный момент создано немало медицинских систем принятия решения, при их разработке возникают некоторые методологические трудности. Ведь сложно схематизировать данные, когда несколько специалистов может по-разному определять одну и ту же болезнь, что нередко происходит. При помощи четкого алгоритма не всегда можно описать некоторые сложные клинические картины. Самой большой же проблемой является то, что при создании системы нужных знаний может и не быть вовсе. В связи с чем производятся попытки разработки системы, знающей больше ее разработчиков.
В идеале разработанный метод должен обладать стопроцентной чувствительностью (вероятность того, что все люди с положительным результатом будут отнесены к нужному классу) и, одновременно, - стопроцентной специфичностью (вероятность того, что все люди с отрицательным результатом будут определены правильно).
Очень часто высокая чувствительность влечет за собой низкую специфичность. Это может происходить из-за того, что не для каждого человека выход определенного параметра за принятую норму будет считаться заболеванием. Здесь играют роль индивидуальные особенности организма.
Увеличить для метода чувствительность так, чтобы при этом не страдала специфичность, помогают нейронные сети. Это нелинейные системы, которые способные классифицировать данные намного лучше часто применяемых линейных методов. Нейронные сети учатся делать выводы, анализируя обнаруженные ими скрытые связи в данных. При этом они не используют какой-то определенный алгоритм вывода для принятия решения, а учатся этому на примерах. Также нейронные сети могут проводить классификацию, подытоживая предыдущий опыт и используя его в последующих задачах. [1]
Подводя итог, можно сказать, что все поставленные задачи были выполнены. Была проведена классификация снимков по наличию на них опухолей на основе работы четырех разработанных моделей нейронной сети и выбрана наилучшая, показавшая значение F-меры равное 0.91.
В дальнейшем применение нейронных сетей показывает свою целесообразность в использовании для программного обеспечения, которое будет быстро и точно обрабатывать огромные массивы данных, и машин, способных видеть и делать то, с чем не справляется человек. Проводимые исследования с применением нейронной сети говорят о перспективности данного направления и еще многих ее неизученных возможностях.