ПРИНЯТЫЕ СОКРАЩЕНИЯ 6
ВВЕДЕНИЕ 8
1. ЛЕТЕРАТУРНЫЙ ОБЗОР 9
1.1. Структура и функции LSD1 10
1.1.1. Структура LSD1 10
1.1.2. Функции LSD1 12
1.1.2.1. LSD1 как ко-репрессор транскрипции 13
1.1.2.2. LSD1 как ко-активатор транскрипции 13
1.1.2.3. LSD1 как деметилаза негистоновых белков 13
1.2. LSD1 и рак 14
1.2.1. LSD1 при раке молочной железы 14
1.2.2. LSD1 при раке простаты 15
1.2.3. LSD1 в AML 15
1.3. Методы скрининга для ингибиторов LSD1 16
1.3.1. Целевой анализ 18
1.3.2. Анализ на основе субстрата 19
1.3.3. Анализ на основе побочных продуктов 20
1.3.4. Анализ на основе ИЦП 20
1.4. Фармакологическое ингибирование LSD1 для терапии рака 21
1.4.1. Инактиваторы МАО и их производные 21
1.4.2. Натуральные продукты и их производные 22
1.4.3. Ингибиторы на основе пептидов 23
1.4.4. Ингибиторы на основе полиаминов 23
1.4.5. Металло-комплексные ингибиторы 24
1.4.6. Другие 25
1.5. Заключительные замечания и перспективы 25
2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 28
2.1. Синтез ингибиторов 28
2.2. Биологические испытания 31
3. ЭКСПЕРИМЕРТАЛЬНАЯ ЧАСТЬ 32
3.1. Реагенты и оборудование 32
3.3. Синтез целевого соединения 35
3.4. Биологические испытания 36
3.4.1. Культивирование клеток 36
3.4.2. Исследования цитотоксичности 36
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
Разработка новых подходов в терапии злокачественных новообразований является одной из важнейших задач современной медицинской химии. Особенных успехов в этом направлении за последние 20 лет удалось достигнуть с разработкой таргетной терапии, ориентированной на молекулярные механизмы в онкотрансформированных клетках. Несмотря на значительные успехи в этой области в последние годы отмечается резкий рост вторичной резистентности к таргетным противоопухолевым препаратом, что делает их использование в клинической практике затруднительным и требует разработки новых типов таргетных агентов. Несмотря на множество методологических подходов к преодолению вторичной резистентности одним из лидирующих подходов является создание таргетных ингибиторов дуального типа.
В представленной работе рассматриваются результаты исследований по изысканию новых дуальных ингибиторов, воздействующих на две важные биологические мишени участвующих в онкогенезе: EGFR - киназный домен эпидермального фактора роста и LSD1 - лизин специфическая гистон диметилаза.
По результатам проделанной работы можно сделать следующие выводы:
1. На основе структурно-ориентированного молекулярного дизайна предложены новые эффективные дуальные ингибиторы ЕОБЯкиназы и LSD1 диметилазы, включающих 4-амино-5-(тиазол-2-ил)пиримидиновый скаффолд.
2. Посредством МТТ-теста показана высокая цитотоксичностьшуЛго
синтезированного соединения в отношении клеточных линий MCF-7, A549, A431 и SH- SY5Y в микромолярных концентрациях.
3. Показано, что высокая цитотоксичность на клеточных линиях сверэкспресирующих исследуемые мишение делает дальнейшее изучение механизма цитотоксического эффекта оправданным и актуальным.
1. ShiY. etal. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. // Cell. Elsevier, 2004. Vol. 119, № 7. P. 941-953.
2. Wang J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation // Nat. Genet. Nature Publishing Group, 2009. Vol. 41, № 1. P. 125-129.
3. Xie Q. et al. Methylation-mediated regulation of E2F1 in DNA damage-induced cell death // J. Recept. Signal Transduct. 2011. Vol. 31, № 2. P. 139-146.
4. Kim Y. et al. Methylation-dependent regulation of HIF-1a stability restricts retinal and tumour angiogenesis // Nat. Commun. Nature Publishing Group, 2016. Vol. 7, № 1. P. 10347.
5. Kozub M.M. et al. LSD1, a double-edged sword, confers dynamic chromatin regulation but commonly promotes aberrant cell growth // F1000Research. 2017. Vol. 6. P. 2016.
6. Huang J. et al. p53 is regulated by the lysine demethylase LSD1 // Nature. Nature Publishing Group, 2007. Vol. 449, № 7158. P. 105-108.
7. Kontaki H., Talianidis I. Lysine Methylation Regulates E2F1-Induced Cell Death // Mol. Cell. Elsevier, 2010. Vol. 39, № 1. P. 152-160.
8. Lee J.-Y. et al. LSD1 demethylates HIF1a to inhibit hydroxylation and ubiquitin- mediated degradation in tumor angiogenesis // Oncogene. Nature Publishing Group, 2017. Vol. 36, № 39. P. 5512-5521.
9. Yang J. et al. Reversible methylation of promoter-bound STAT3 by histone- modifying enzymes. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2010. Vol. 107, № 50. P. 21499-21504.
10. Laurent B. et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. // Mol. Cell. Elsevier, 2015. Vol. 57, № 6. P. 957-970.
11. Jotatsu T. et al. LSD1/KDM1 isoform LSD1+8a contributes to neural differentiation in small cell lung cancer // Biochem. Biophys. Reports. Elsevier, 2017. Vol. 9. P. 86-94.
12. Pedersen M.T., Helin K. Histone demethylases in development and disease. // Trends Cell Biol. Elsevier, 2010. Vol. 20, № 11. P. 662-671.
13. Harris W.J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. // Cancer Cell. Elsevier, 2012. Vol. 21, № 4. P. 473-487.
14. Schenk T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all- trans-retinoic acid differentiation pathway in acute myeloid leukemia // Nat. Med. Nature Publishing Group, 2012. Vol. 18, № 4. P. 605-611.
15. Magliulo D., Bernardi R., Messina S. Lysine-Specific Demethylase 1A as a Promising Target in Acute Myeloid Leukemia // Front. Oncol. Frontiers, 2018. Vol. 8. P. 255.
16. Pilotto S. et al. Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSDl-mediated H3 demethylation. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2015. Vol. 112, № 9. P. 2752-2757.
17. Marabelli C., Marrocco B., Mattevi A. The growing structural and functional complexity of the LSD1/KDM1A histone demethylase // Curr. Opin. Struct. Biol. Elsevier Current Trends, 2016. Vol. 41. P. 135-144.
18. Da G. et al. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2006. Vol. 103, № 7. P. 2057-2062.
19. Aravind L., Iyer L.M. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities // Genome Biol. BioMed Central, 2002. Vol. 3, № 8. P. research0039.1.
20. Metzger E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription // Nature. Nature Publishing Group, 2005. Vol. 437, № 7057. P. 436-439.
21. Stavropoulos P., Blobel G., Hoelz A. Crystal structure and mechanism of human lysine-specific demethylase-1 // Nat. Struct. Mol. Biol. Nature Publishing Group, 2006. Vol. 13, № 7. P. 626-632.
22. Forneris F. et al. New roles of flavoproteins in molecular cell biology: Histone demethylase LSD1 and chromatin // FEBS J. John Wiley & Sons, Ltd (10.1111), 2009. Vol. 276, № 16. P. 4304-4312.
23. Chen Y. et al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1). // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2006. Vol. 103, № 38. P. 13956-13961.
24. Yoneyama M. et al. Structural and Functional Differences of SWIRM Domain Subtypes // J. Mol. Biol. Academic Press, 2007. Vol. 369, № 1. P. 222-238.
25. Zhou C. et al. Identification of Novel Selective Lysine-Specific Demethylase 1 (LSD1) Inhibitors Using a Pharmacophore-Based Virtual Screening Combined with Docking // Chem. Biol. Drug Des. John Wiley & Sons, Ltd (10.1111), 2015. Vol. 85, № 6. P. 659-671.
26. Ota Y., Suzuki T. Drug Design Concepts for LSD1- Selective Inhibitors // Chem. Rec. John Wiley & Sons, Ltd, 2018. Vol. 18, № 12. P. 1782-1791.
27. You A. et al. CoREST is an integral component of the CoREST- human histone deacetylase complex. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2001. Vol. 98, № 4. P. 1454-1458.
28. Baron R., Vellore N.A. LSD1/CoREST is an allosteric nanoscale clamp regulated by H3-histone-tail molecular recognition // Proc. Natl. Acad. Sci. National Academy of Sciences,
2012. Vol. 109, № 31. P. 12509-12514.
29. Sun G. et al. Histone demethylase LSD1 regulates neural stem cell proliferation. // Mol. Cell. Biol. American Society for Microbiology Journals, 2010. Vol. 30, № 8. P. 1997-2005.
30. Hakimi M.-A. et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2002. Vol. 99, № 11. P. 7420-7425.
31. Ballas N. et al. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. // Cell. Elsevier, 2005. Vol. 121, № 4. P. 645-657.
32. Perillo B. et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. // Science. American Association for the Advancement of Science, 2008. Vol. 319, № 5860. P. 202-206.
33. Bennesch M.A. et al. LSD1 engages a corepressor complex for the activation of the estrogen receptor a by estrogen and cAMP // Nucleic Acids Res. Narnia, 2016. Vol. 44, № 18. P. 8655-8670.
34. Hino S., Kohrogi K., Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells // Cancer Sci. John Wiley & Sons, Ltd (10.1111), 2016. Vol. 107, № 9. P. 1187-1192.
35. Sorna V. et al. High-Throughput Virtual Screening Identifies Novel N'-(1- Phenylethylidene)-benzohydrazides as Potent, Specific, and Reversible LSD1 Inhibitors // J. Med. Chem. American Chemical Society, 2013. Vol. 56, № 23. P. 9496-9508.
36. Koboldt D.C. et al. Comprehensive molecular portraits of human breast tumours // Nature. Nature Publishing Group, 2012. Vol. 490, № 7418. P. 61-70.
37. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016 // CA. Cancer J. Clin.
2016. Vol. 66, № 1. P. 7-30.
38. Rivenbark A.G., Coleman W.B. Field cancerization in mammary carcinogenesis — Implications for prevention and treatment of breast cancer // Exp. Mol. Pathol. Academic Press, 2012. Vol. 93, № 3. P. 391-398.
39. Serce N. et al. Elevated expression of LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to invasive ductal carcinoma of the breast // BMC Clin. Pathol. BioMed Central, 2012. Vol. 12, № 1. P. 13.
40. Bradley C. et al. Carcinogen-induced histone alteration in normal human mammary epithelial cells // Carcinogenesis. Narnia, 2007. Vol. 28, № 10. P. 2184-2192.
41. Jordan V.C. Selective estrogen receptor modulation: concept and consequences in cancer. // Cancer Cell. Elsevier, 2004. Vol. 5, № 3. P. 207-213.
42. Mann M. et al. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy // Cancers (Basel). Molecular Diversity Preservation International,
2011. Vol. 3, № 2. P. 1691-1707.
43. Hu Q. et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2008. Vol. 105, № 49. P. 19199-19204.
44. Pollock J.A. et al. Lysine-Specific Histone Demethylase 1 Inhibitors Control Breast Cancer Proliferation in ERa-Dependent and -Independent Manners // ACS Chem. Biol. American Chemical Society, 2012. Vol. 7, № 7. P. 1221-1231.
45. Bennani-Baiti I.M. Integration of ERa-PELP1-HER2 signaling by LSD1 (KDM1A/AOF2) offers combinatorial therapeutic opportunities to circumventing hormone resistance in breast cancer // Breast Cancer Res. BioMed Central, 2012. Vol. 14, № 5. P. 112.
46. Kim J. et al. Negative regulation of ERa by a novel protein CAC1 through association with histone demethylase LSD1 // FEBS Lett. John Wiley & Sons, Ltd, 2013. Vol. 587, № 1. P. 17-22.
47. Park U.-H. et al. ASXL2 promotes proliferation of breast cancer cells by linking ERa to histone methylation // Oncogene. Nature Publishing Group, 2016. Vol. 35, № 28. P. 3742-3752.
48. Wu Y., Zhou B.P. Epigenetic regulation of LSD1 during mammary carcinogenesis. // Mol. Cell. Oncol. Taylor & Francis, 2014. Vol. 1, № 3. P. e963426.
49. Vasilatos S.N. et al. Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells // Carcinogenesis. Narnia, 2013. Vol. 34, № 6. P. 1196-1207.
50. Huang Y. et al. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells // Breast Cancer Res. Treat. Springer US, 2012. Vol. 131, № 3. P. 777-789.
51. Yang Y. et al. LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer // J. Mol. Cell Biol. / ed. Shen Z. Narnia, 2018. Vol. 10, № 4. P. 285-301.
52. Nieto M.A. The snail superfamily of zinc-finger transcription factors // Nat. Rev. Mol. Cell Biol. Nature Publishing Group, 2002. Vol. 3, № 3. P. 155-166.
53. Aoki M. et al. Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 1999. Vol. 96, № 1. P. 139-144.
54. Yang J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. // Cell. Elsevier, 2004. Vol. 117, № 7. P. 927-939.
55. Lin Y. et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. // EMBO J. EMBO Press, 2010. Vol. 29, № 11. P. 1803— 1816.
56. Lin T. et al. Requirement of the histone demethylase LSD1 in Snail-mediated transcriptional repression during epithelial-mesenchymal transition // Oncogene. Nature Publishing Group, 2010. Vol. 29, № 35. P. 4896-4904.
57. Lin Y., Kang T., Zhou B.P. Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner // Cell Cycle. Taylor & Francis, 2014. Vol. 13, № 11. P. 1708-1716.
58. Wu Z.-Q. et al. Canonical Wnt signaling regulates Slug activity and links epithelial- mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2012. Vol. 109, № 41. P. 16654-16659.
59. Zheng Y. et al. The Homeotic Protein SIX3 Suppresses Carcinogenesis and Metastasis through Recruiting the LSD1/NuRD(MTA3) Complex // Theranostics. 2018. Vol. 8, №
4. P. 972-989.
60. Munkley J. et al. Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. // EBioMedicine. Elsevier, 2016. Vol. 8. P. 103-116.
61. Willmann D. et al. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor // Int. J. Cancer. John Wiley & Sons, Ltd, 2012. Vol. 131, № 11. P. 2704-2709.
62. Kashyap V. et al. The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer // Mol. Oncol. John Wiley & Sons, Ltd, 2013. Vol. 7, № 3. P. 555-566.
63. Ketscher A. et al. LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6 // Oncogenesis. Nature Publishing Group, 2014. Vol. 3, № 10. P. e120-e120.
64. Rozan L.M., El-Deiry W.S. p53 downstream target genes and tumor suppression: a classical view in evolution // Cell Death Differ. 2007. Vol. 14, № 1. P. 3-9.
65. Hotte S.J., Saad F. Current management of castrate-resistant prostate cancer // Curr. Oncol. 2010. Vol. 17, № 0. P. 72-79.
66. Cai C. et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. // Cancer Cell. Elsevier, 2011. Vol. 20, № 4. P. 457-471.
67. Kahl P. et al. Androgen Receptor Coactivators Lysine-Specific Histone Demethylase 1 and Four and a Half LIM Domain Protein 2 Predict Risk of Prostate Cancer Recurrence // Cancer Res. 2006. Vol. 66, № 23. P. 11341-11347.
68. Wissmann M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression // Nat. Cell Biol. Nature Publishing Group, 2007. Vol. 9, № 3. P. 347-353.
69. Regufe da Mota S. et al. LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models // Cancer Cell Int. BioMed Central, 2018. Vol. 18, № 1. P. 71.
70. Liang Y. et al. LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression // Cancer Res. American Association for Cancer Research, 2017. Vol. 77, № 20. P. 5479-5490.
71. Sehrawat A. et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function // Proc. Natl. Acad. Sci. 2018. Vol. 115, № 18. P. E4179- E4188.
72. Bullinger L., Dohner K., Dohner H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. // J. Clin. Oncol. American Society of Clinical Oncology, 2017. Vol. 35, № 9. P. 934-946.
73. Larrosa-Garcia M., Baer M.R. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions // Mol. Cancer Ther. American Association for Cancer Research,
2017. Vol. 16, № 6. P. 991-1001.
74. Wang J. et al. Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2018. Vol. 115, № 2. P. E244-E252.
75. Sprussel A. et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation // Leukemia. Nature Publishing Group,
2012. Vol. 26, № 9. P. 2039-2051.
76. Kon Kim T., Gore S.D., Zeidan A.M. Epigenetic Therapy in Acute Myeloid Leukemia: Current and Future Directions // Semin. Hematol. 2015. Vol. 52, № 3. P. 172-183.
77. Amente S., Lania L., Majello B. The histone LSD1 demethylase in stemness and cancer transcription programs // Biochim. Biophys. Acta - Gene Regul. Mech. Elsevier, 2013. Vol. 1829, № 10. P. 981-986.
78. Takeuchi M. et al. LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2 // Proc. Natl. Acad. Sci. National Academy of Sciences, 2015. Vol. 112, № 45. P. 13922-13927.
79. Velinder M. et al. GFI1 functions in transcriptional control and cell fate determination require SNAG domain methylation to recruit LSD1 // Biochem. J. Portland Press Limited, 2017. Vol. 474, № 17. P. 2951-2951.
80. Thambyrajah R. et al. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1 // Nat. Cell Biol. Nature Publishing Group, 2016. Vol. 18, № 1. P. 21-32.
81. Saleque S. et al. Epigenetic Regulation of Hematopoietic Differentiation by Gfi-1 and Gfi-1b Is Mediated by the Cofactors CoREST and LSD1 // Mol. Cell. Elsevier, 2007. Vol. 27, № 4. P. 562-572.
82. Altucci L., Gronemeyer H. The promise of retinoids to fight against cancer // Nat. Rev. Cancer 2001 13. Nature Publishing Group, 2001. Vol. 1, № 3. P. 181.
83. Lynch J.T. et al. Pharmacological Inhibitors of LSD1 Promote Differentiation of Myeloid Leukemia Cells through a Mechanism Independent of Histone Demethylation // Blood. 2014. Vol. 124, № 21.
84. Shoichet B.K. Virtual screening of chemical libraries // Nat. 2004 4327019. Nature Publishing Group, 2004. Vol. 432, № 7019. P. 862.
85. Mould D.P. et al. Development of 5-hydroxypyrazole derivatives as reversible inhibitors of lysine specific demethylase 1 // Bioorg. Med. Chem. Lett. Pergamon, 2017. Vol. 27, № 14. P.3190-3195.
86. Schule E.M. Interaction of methylated lsd1 and chd1, a compound inhibiting this interaction for use in therapy, and a screening method for such a compound. 2018. Vol. 1.
87. Syafrizayanti et al. Methods for analyzing and quantifying protein-protein interaction // Expert Rev. Proteomics. 2014. Vol. 11, № 1. P. 107-120.
88. Zheng Y.-C. et al. An Overview on Screening Methods for Lysine Specific Demethylase 1 (LSD1) Inhibitors // Curr. Med. Chem. 2017. Vol. 24, № 23.
89. Wigle T.J. et al. A High-Throughput Mass Spectrometry Assay Coupled with Redox Activity Testing Reduces Artifacts and False Positives in Lysine Demethylase Screening // J. Biomol. Screen. SAGE PublicationsSage CA: Los Angeles, CA, 2015. Vol. 20, № 6. P. 810-820.
90. Plant M. et al. Screening for lysine-specific demethylase-1 inhibitors using a label- free high-throughput mass spectrometry assay // Anal. Biochem. Academic Press, 2011. Vol. 419, № 2. P. 217-227.
91. Huang Y. et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2007. Vol. 104, № 19. P. 8023-8028.
92. Zhou M. et al. A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases // Anal. Biochem. Academic Press, 1997. Vol. 253, № 2. P. 162-168.
93. Trinder P. Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor // Ann. Clin. Biochem. An Int. J. Biochem. Lab. Med. SAGE PublicationsSage UK: London, England, 1969. Vol. 6, № 1. P. 24-27.
94. Hauser A.-T. et al. Screening Assays for Epigenetic Targets Using Native Histones as Substrates // J. Biomol. Screen. SAGE PublicationsSage CA: Los Angeles, CA, 2012. Vol. 17, №
1. P. 18-26.
95. Neves M.A.C., Totrov M., Abagyan R. Docking and scoring with ICM: the benchmarking results and strategies for improvement // J. Comput. Aided. Mol. Des. Springer Netherlands, 2012. Vol. 26, № 6. P. 675-686.
96. Mimasu S. et al. Structurally Designed trans -2-Phenylcyclopropylamine Derivatives Potently Inhibit Histone Demethylase LSD1/KDM1,, § // Biochemistry. American Chemical Society, 2010. Vol. 49, № 30. P. 6494-6503.
97. Gupta S. et al. Reversible LSD1 inhibition with HCI-2509 induces the p53 gene expression signature and disrupts the MYCN signature in high-risk neuroblastoma cells // Oncotarget. Impact Journals, 2018. Vol. 9, № 11. P. 9907-9924.
98. Fiskus W. et al. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells // Leukemia. Nature Publishing Group, 2014. Vol. 28, № 11. P. 2155-2164.
99. Gupta S. et al. Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells // Prostate Cancer Prostatic Dis. Nature Publishing Group, 2016. Vol. 19, № 4. P. 349-357.
100. Malo N. et al. Statistical practice in high-throughput screening data analysis // Nat. Biotechnol. Nature Publishing Group, 2006. Vol. 24, № 2. P. 167-175.
101. Bibette J. Gaining confidence in high-throughput screening. // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 2012. Vol. 109, № 3. P. 649-650.
102. Maojun Yang § et al. Structural Basis for the Inhibition of the LSD1 Histone Demethylase by the Antidepressant trans-2-Phenylcyclopropylaminef,{. American Chemical Society , 2007.
103. Culhane J.C. et al. A Mechanism-Based Inactivator for Histone Demethylase LSD1 // J. Am. Chem. Soc. 2006. Vol. 128, № 14. P. 4536-4537.
104. Lizcano J.M., Unzeta M., Tipton K.F. A Spectrophotometric Method for Determining the Oxidative Deamination of Methylamine by the Amine Oxidases // Anal. Biochem. Academic Press, 2000. Vol. 286, № 1. P. 75-79.
105. Hazeldine S. et al. Low Molecular Weight Amidoximes that Act as Potent Inhibitors of Lysine-Specific Demethylase 1 // J. Med. Chem. American Chemical Society, 2012. Vol. 55, №
17. P. 7378-7391.
106. Wu Y. et al. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes. // Biochem. J. Portland Press Limited, 2012. Vol. 442, № 3. P. 693-701.
107. Huang Y. et al. Novel Oligoamine Analogues Inhibit Lysine-Specific Demethylase 1 and Induce Reexpression of Epigenetically Silenced Genes // Clin. Cancer Res. American Association for Cancer Research, 2009. Vol. 15, № 23. P. 7217-7228.
108. Yu V. et al. High-Throughput TR-FRET Assays for Identifying Inhibitors of LSD1 and JMJD2C Histone Lysine Demethylases // J. Biomol. Screen. SAGE PublicationsSage CA: Los Angeles, CA, 2012. Vol. 17, № 1. P. 27-38.
109. Gauthier N. et al. Development of Homogeneous Nonradioactive Methyltransferase
and Demethylase Assays Targeting Histone H3 Lysine 4 // J. Biomol. Screen. SAGE
PublicationsSage CA: Los Angeles, CA, 2012. Vol. 17, № 1. P. 49-58.
110. Takagi T. et al. Comparison of Luminescence ADP Production Assay and Radiometric Scintillation Proximity Assay for Cdc7 Kinase // Comb. Chem. High Throughput Screen. 2011. Vol. 14, № 8. P. 669-687.
111. Yu W. et al. A scintillation proximity assay for histone demethylases // Anal. Biochem. Academic Press, 2014. Vol. 463. P. 54-60.
112. Ahmed Khan M.N. et al. Design, synthesis, and biological activity of N-alkylated analogue of NCL1, a selective inhibitor of lysine-specific demethylase 1 // Medchemcomm. The Royal Society of Chemistry, 2015. Vol. 6, № 3. P. 407-412.
113. Zheng Y.-C. et al. A Systematic Review of Histone Lysine-Specific Demethylase 1 and Its Inhibitors // Med. Res. Rev. John Wiley & Sons, Ltd, 2015. Vol. 35, № 5. P. 1032-1071.
114. Ueda R. et al. Identification of Cell-Active Lysine Specific Demethylase 1-Selective Inhibitors // J. Am. Chem. Soc. American Chemical Society, 2009. Vol. 131, № 48. P. 17536¬17537.
115. Youdim M.B.H., Edmondson D., Tipton K.F. The therapeutic potential of monoamine oxidase inhibitors // Nat. Rev. Neurosci. 2006. Vol. 7, № 4. P. 295-309.
116. Maes T. et al. Advances in the development of histone lysine demethylase inhibitors // Curr. Opin. Pharmacol. 2015. Vol. 23. P. 52-60.
117. Maes T. et al. ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia // Cancer Cell. Elsevier, 2018. Vol. 33, № 3. P. 495-511.e12.
118. Mohammad H.P. et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. // Cancer Cell. Elsevier, 2015. Vol. 28, № 1. P. 57-69.
119. Cortez V. et al. Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer // Breast Cancer Res. BioMed Central, 2012. Vol. 14, № 4. P. R108.
120. Etani T. et al. NCL1, a highly selective lysine-specific demethylase 1 inhibitor, suppresses prostate cancer without adverse effect // Oncotarget. Impact Journals, 2015. Vol. 6, № 5. P. 2865-2878.
121. Sareddy G.R. et al. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway // Oncogene. Nature Publishing Group, 2017. Vol. 36, № 17. P. 2423-2434.
122. Sareddy G.R. et al. KDM1 is a novel therapeutic target for the treatment of gliomas // Oncotarget. Impact Journals, 2013. Vol. 4, № 1. P. 18-28.
123. Prusevich P. et al. A Selective Phenelzine Analogue Inhibitor of Histone Demethylase LSD1 // ACS Chem. Biol. American Chemical Society, 2014. Vol. 9, № 6. P. 1284-1293.
124. Lomenick B. et al. Target Identification Using Drug Affinity Responsive Target Stability (DARTS) // Current Protocols in Chemical Biology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011.
125. Abdulla A., Zhao X., Yang F. Natural Polyphenols Inhibit Lysine-Specific Demethylase-1 in vitro. // J. Biochem. Pharmacol. Res. 2013. Vol. 1, № 1. P. 56-63.
126. Sakane C. et al. Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives // Biochem. Biophys. Res. Commun. Academic Press, 2014. Vol. 444, № 1. P. 24-29.
127. Wojcik P., Berlicki E. Peptide-based inhibitors of protein-protein interactions // Bioorg. Med. Chem. Lett. Pergamon, 2016. Vol. 26, № 3. P. 707-713.
128. Forneris F. et al. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. // J. Biol. Chem. American Society for Biochemistry and Molecular Biology, 2007. Vol. 282, № 28. P. 20070-20074.
129. Kumarasinghe I.R., Woster P.M. Synthesis and Evaluation of Novel Cyclic Peptide Inhibitors of Lysine-Specific Demethylase 1 // ACS Med. Chem. Lett. American Chemical Society, 2014. Vol. 5, № 1. P. 29-33.
130. Itoh Y. et al. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators // J. Med. Chem. American Chemical Society, 2016. Vol. 59, № 4. P.1531-1544.
131. Sharma S.K. et al. (Bis)urea and (Bis)thiourea Inhibitors of Lysine-Specific Demethylase 1 as Epigenetic Modulators // J. Med. Chem. American Chemical Society, 2010. Vol. 53, № 14. P. 5197-5212.
132. Huang Z. et al. Lysine-Specific Demethylase 1 (LSD1/KDM1A) Contributes to Colorectal Tumorigenesis via Activation of the Wnt/B-Catenin Pathway by Down-Regulating Dickkopf-1 (DKK1) // PLoS One / ed. Samant R. 2013. Vol. 8, № 7. P. e70077.
133. Yang C. et al. A Rhodium(III)-Based Inhibitor of Lysine-Specific Histone Demethylase 1 as an Epigenetic Modulator in Prostate Cancer Cells // J. Med. Chem. American Chemical Society, 2017. Vol. 60, № 6. P. 2597-2603.
134. Wang J. et al. Novel Histone Demethylase LSD1 Inhibitors Selectively Target Cancer Cells with Pluripotent Stem Cell Properties // Cancer Res. 2011. Vol. 71, № 23. P. 7238-7249.
135. McGrath J.P. et al. Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes // Cancer Res. American Association for Cancer Research, 2016. Vol. 76, № 7. P. 1975-1988.
136. Mould D.P. et al. Reversible Inhibitors of LSD1 as Therapeutic Agents in Acute Myeloid Leukemia: Clinical Significance and Progress to Date // Med. Res. Rev. John Wiley & Sons, Ltd, 2015. Vol. 35, № 3. P. 586-618.