Тема: Сорбция водорода наноструктурными углеродными материалами
Закажите новую по вашим требованиям
Представленный материал является образцом учебного исследования, примером структуры и содержания учебного исследования по заявленной теме. Размещён исключительно в информационных и ознакомительных целях.
Workspay.ru оказывает информационные услуги по сбору, обработке и структурированию материалов в соответствии с требованиями заказчика.
Размещение материала не означает публикацию произведения впервые и не предполагает передачу исключительных авторских прав третьим лицам.
Материал не предназначен для дословной сдачи в образовательные организации и требует самостоятельной переработки с соблюдением законодательства Российской Федерации об авторском праве и принципов академической добросовестности.
Авторские права на исходные материалы принадлежат их законным правообладателям. В случае возникновения вопросов, связанных с размещённым материалом, просим направить обращение через форму обратной связи.
📋 Содержание
Введение 9
1. Обзор 11
1.1 Сорбция и ее виды 11
1.2 Существующие способы хранения водорода 13
1.3 Перспективные способы хранения водорода 15
1.3.1 Гидриды металлов, сплавов, интерметаллидов, применяемые для хранения
водорода 15
1.3.2 Криоадсорбция 18
1.3.3 Сорбция углеродными наноструктурами 19
1.4 Характеристика структурных модификаций углерода 20
1.4.1 Фуллерены 20
1.4.2 Нанотрубки 21
1.4.3 Графитовое нановолокно 21
1.4.4 Технический углерод 22
Вывод по главе 1 228
2. Практическая часть 289
2.1 Разработка методики определения сорбционной способности 289
2.1.1 Разработка компьютерной программы 312
2.2 Прочностной расчет реакторной части установки 378
2.2.1. Проектирование реактора 37
2.2.1.1 Подбор материала 37
2.2.1.2 Прочностной расчет реактора 37
2.3 Расчет кинетических параметров термодесорбции 41
ЗАКЛЮЧЕНИЕ 45
СПИСОК ПУБЛИКАЦИЙ СТУДЕНТА 46
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 48
Приложение А 51
Приложение Б 52
Приложение В 53
Приложение Г 54
📖 Введение
На сегодняшний день перспективы использования водорода не вызывают сомнений. Этот газ может быть использован как в двигателях внутреннего сгорания, так и в водородных топливных элементах, в которых энергия вырабатывается в виде электричества.
Однако на пути развития водородной энергетики существуют до сих пор нерешенные проблемы. Традиционные способы хранения водорода обладают низкими массовыми и объемными характеристиками. Поэтому наиболее важная задача, стоящая перед водородной энергетикой, заключается в создании технологии, которая позволила бы осуществлять хранение водорода в больших объемах и без риска для окружающих. Такая технология является крайне наукоемкой, она подразумевает поиск или создание материалов и технологий, а также соответствующей вычислительной и аппаратурной базы, которые позволили бы осуществлять безопасную и экономически выгодную транспортировку водорода.
Согласно стандартам Международного Энергетического Агентства, система хранения считается эффективной, в случае, если доля водорода, по сравнению с массой системы составляет 5 % и более.
Среди существующих способов хранения и транспортировки водорода наиболее перспективным считается его сорбция различными углеродными наноструктурными системами. Исследования, проводимые на кафедре Технической физики, предполагают нахождение эффективного и безопасного способа хранения водорода.
Целью данной работы является определение основных параметров осуществления процесса сорбции водорода углеродными структурами.
Для достижения поставленной цели решались следующие задачи:
1. Обзор и анализ существующих материалов используемых для хранения и транспортировки водорода, а также изучение строения и свойств углеродных наноструктур;
2. Расчет кинетических параметров процесса сорбции (математическое описание адсорбции и определение скорости диффузии водорода в углеродсодержащие наносистемы) и составление компьютерной программы;
3. Прочностной расчет реакторной части установки;
4. Разработка программного обеспечения для автоматизации обработки экспериментальных данных по адсорбционному процессу.
✅ Заключение
На основании результатов проведенных исследований, приведенных в настоящей работе можно сделать ряд выводов:
1. Проведен подробный обзор существующих и перспективных систем используемых для хранения и транспортировки водорода, а также изучены свойства и строение углеродных наноструктур;
2. Составлена программа расчета сорбционных свойств пористых наноструктур.
3. Проведен прочностной расчет реакторной части экспериментальной установки. Установлено, что для заданного диапазона давлений и температур минимальная толщина стенки реактора составляет 0,73 мм, что учтено при его изготовлении.
4. Разработана компьютерная программа расчета кинетических параметров термодесорбции.
5. Проведено экономическое обоснование эффективности проведения научно-исследовательской работы.
6. Рассмотрены основные вопросы, связанные с охраной труда и безопасностью на рабочем месте.



