Введение 15
1. Теоретическая часть 17
1.1 Взаимодействие водорода со сплавами (металлами) 17
1.2 Проникновение и состояние водорода в металле 18
1.3 Способы насыщение металлов водородом 20
1.4 Структура и свойства сплава TiNi 22
1.5 Применение сплава NiTi 27
1.6 Проблема водородного охрупчивания NiTi в биомедицинском применении 27
2. Экспериментальные методики 29
2.1 Электролитическое наводороживание при различных температурах 29
2.2 Метод измерения концентрации водорода на анализаторе RHEN602 фирмы LECO . 32
2.3 Метод термодесорбционной спектроскопии на автоматизированном комплексе Gas
Reaction Controller LPB фирмы Advanced Materials Research 35
3. Экспериментальные результаты 38
3.1 Микроструктура исходных образцов 38
3.2 Зависимость концентрации водорода от времени и плотности тока электролитического
наводороживания при различных температурах 40
3.3 Результаты термодесорбционной спектроскопии образцов после наводороживания 43
Заключение 45
4. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение 46
Введение 46
4.1 Планирование этапов и выполнение работ по НИОКР 46
4.1.1 Планирование этапов работ 46
4.1.2 Определение трудоемкости выполнения НИОКР 48
4.1.3 Техническая готовность темы 50
4.1.4 Построение графика работ 51
4. 2 Оценка коммерческого потенциала и перспективности проведения научных исследований с позиции ресурсоэффективности и ресурсосбережения 52
4.2.1 Потенциальные потребители результатов исследования 52
4.2.2 Анализ конкурентных технических решений 53
4.2.3 SWOT-анализ 53
В таблице 4.2.4 представлены результаты первого этапа SWOT-анализа 53
В рамках третьего этапа должна быть составлена итоговая матрица SWOT-анализа, которая приводится в бакалаврской работе (табл. 4.2.5) 54
4.3 Бюджет научно-технического исследования (НТИ) 55
4.3.1 Расчет материальных затрат НТИ 55
4.3.2 Расчет затрат на специальное оборудование для научных (экспериментальных)
работ 56
4.3.3 Основная и дополнительная заработная плата исполнителей темы 57
4.3.4 Отчисления во внебюджетные фонды (страховые отчисления) 58
4.3.5 Накладные расходы 58
4.3.6 Формирование бюджет затрат НТИ 59
4.4 Определение ресурсной (ресурсосберегающей), финансовой, социальной и
экономической эффективности исследования 59
Вывод 61
5. Социальная ответственность 62
Введение 62
5.1 Техногенная безопасность 62
5.2 Анализ вредных и опасных факторов 64
5.2.1 Электромагнитные поля 64
5.2.2 Шум 64
5.2.3 Освещение 65
5.3 Организационные мероприятия обеспечения безопасности 66
5.4 Особенности законодательного регулирования проектных решений 67
5.5 Безопасность в чрезвычайных ситуациях 68
5.6 Расчет воздухообмена в жилых и общественных помещениях 71
Вывод 72
Список литературы 73
Сплав никелида титана (NiTi) широко используется в промышленности и биомедицине, так как обладает свойством памяти формы и сверхэластичностью и обладает хорошей биосовместимостью [1-5]. Так, в ортодонтических клиниках проволоку из NiTi используют для зубных имплантатов и брекетных устройств [6-8]. При этом зубные имплантаты на основе никелида титана подвергаются наводороживанию и последующему охрупчиванию, что приводит к их разрушению раньше завершения срока эксплуатации [9-12]. Источником водорода в имплантатах является водород, содержащийся в человеческом организме и в зубных пастах [13-15].
Решение проблемы водородного охрупчивания медицинских изделий из никелида титана требует изучения особенностей накопления и распределения водорода в образцах из Ni-Ti, а также подготовка образцов с различными концентрациями водорода для проведения механических исследований. Для наводороживания образцов из никелида титана может быть применен метод электролитического наводороживания из водного 0,9% раствора NaCl (физиологический раствор). Метод электролитического наводороживания является самым простым способом ввести водород в экспериментальные образцы и не требует существенных затрат. А возможность изменять такие параметры наводороживания как плотность тока и температура электролита позволит подготавливать образцы с различными концентрациями водорода и с различным его состоянием внутри металла [16-20].
Таким образом, исследования накопления водорода в сплаве никелида-титана представляют, как и практический интерес (для дальнейшей разработки методов по решению проблемы водородного охрупчивания), так и фундаментальный интерес (исследование влияния параметров наводороживания на состояние водорода в металле) и проведение таких исследований является актуальным.
В связи со всем выше сказанным, целью настоящей работы является: установление основных закономерностей накопления и распределения водорода в сплаве никелида титана при электролитическом наводороживании. Для решения поставленной цели были сформулированы следующие задачи:
1. Проведение литературного обзора по взаимодействию водорода со сплавом никелида титана;
2. Разработка электролитической ячейки для наводороживания при различных плотностях тока и температурах электролита;
3. Электролитическое наводороживание в водном 0,9% растворе хлорида натрия экспериментальных образцов из никелида титана с разным размером зерна при различных плотностях тока и температурах электролита;
4. Определение концентрации водорода и проведение экспериментов по термодесорбционной спектроскопии образцов после наводороживания.
Вывод: в ходе рассмотрения безопасности и гигиены труда при осуществлении работ по наводороживанию с помощью установки Gas Reaction Controller, были выявлены вредные и опасные факторы рабочей зоны, причины и средства защиты, рассмотрены чрезвычайные ситуации и поведение в них. Также был произведен расчет воздухообмена в помещении рабочей зоны с установкой Gas Reaction Controller, в котором работает один человек. Рассчитанный воздухообмен помещения равен 46 м3/ч.