Введение 3
1 Математическое моделирование процесса резания 5
1.1 Обзор методов моделирования резания 5
1.2 Цифровой двойник 18
2 Проектирование аппаратной части цифрового двойника 26
3 Разработка алгоритма диагностики твердого точения 38
4 Дальнейшее развитие модели 72
Заключение 76
Список используемых источников 77
Приложение А Диплом победителя конкурса грантов форума «1Волга» 81
Приложение Б Благодарность Союза машиностроителей России
Современное машиностроение предъявляет все более высокие требования к эффективности производства. Для повышения точности готовой продукции, снижения ее себестоимости и повышения производительности применяются различные новые технологии. Так, в настоящее время активно развивается цифровизация производства, представляющая собой следующий за автоматизацией этап развития промышленности. В связи с этим принято говорить о переходе от Индустрии 3.0 к Индустрии 4.0, в рамках которой планируется массовое внедрение в промышленность принципиально новых объектов, так называемых киберфизических систем. В настоящее время нет общепринятого точного определения того, что же такое киберфизическая система. Однако общей чертой таких систем является глубокая интеграция физического и виртуального мира. На производстве киберфизические системы представляют собой совокупность большого количества датчиков, которые в режиме реального времени отслеживают интересующие параметры технологического процесса, вычислительных устройств и программного обеспечения, которые занимаются обработкой полученной информации, и объектов управления, в частности, приводов металлорежущего станка. При таком подходе используется комплексная математическая модель технологического процесса, которая актуализирует свои параметры в режиме реального времени. Такую модель называют цифровым двойником.
Использование подобных технологий на производстве стало возможным лишь в середине 2010 годов, когда электроника стала более производительной и дешевой. При этом наряду с развитием электроники происходит развитие прикладной математики. В частности, для анализа больших объемов данных активно используются технологии машинного обучения. Технологии искусственного интеллекта позволяют решать принципиально новый класс задач, которые раньше были под силу только 3
человеку. Таким образом, современные информационные технологии выводят диагностику и управление технологическими процессами на совершенно новый уровень.
Целью работы является разработка математической модели для онлайн-диагностики процесса резания на примере твердого точения стали ХВГ. Модель должна стать одной из частей цифрового двойника процесса резания.
Для достижения поставленной цели сформированы следующие задачи исследования, решенные при помощи разработанных математических моделей на основе машинного обучения:
1) смоделировать зависимость качества поверхности от режимов резания;
2) смоделировать зависимость типа стружки от режимов резания;
3) разработать алгоритм онлайн-диагностики глубины резания по сигналу тока привода главного движения станка;
4) разработать алгоритм онлайн-диагностики качества поверхности и типа стружки.
Объект исследования - процесс твердого точения стали ХВГ.
Научная новизна исследования заключается в разработке математической модели для решения задачи онлайн-диагностики процесса твердого точения стали ХВГ на основе данных, полученных со встроенных в станок датчиков, входящих в состав подсистемы диагностики системы числового программного управления токарного станка.
В ходе выполнения работы проведены экспериментальные исследования процесса твердого точения стали ХВГ. Получены данные о зависимости качества обработанной поверхности, типа стружки и силовой нагрузки от режимов обработки. В ходе исследований разработана математической модель для онлайн-диагностики процесса резания на примере твердого точения стали ХВГ. Модель может быть использована как одна из частей цифрового двойника процесса резания.
Для достижения заданной цели при помощи разработанных математических моделей на основе машинного обучения решены ключевые задачи исследования. А именно, смоделированы зависимости качества поверхности и типа стружки от режимов резания с использованием радиально-базисных нейронных сетей, разработан алгоритм онлайн- диагностики глубины резания по сигналу тока привода главного движения станка на основе значения энергии сигнала. В итоге разработан алгоритм онлайн-диагностики качества поверхности и типа стружки, который представляет собой ансамбль разработанных ранее математических моделей процесса обработки. Также в работе сделаны выводы о возможности дальнейшего развития представленного подхода за счет разработки дополнительных математических моделей диагностики, а также разработки системы автоматического управления технологическим процессом. Предложенные в работе решения способны существенно повысить эффективность современного производства.
Работа выполнена при поддержке Фонда содействия развитию институтов гражданского общества в Приволжском Федеральном округе (ПФО) в рамках грантовой программы Молодежного форума ПФО «1Волга» (Приложение А). Работа отмечена Благодарностью Союза машиностроителей России (Приложение Б).