МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ БИОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В НЕОДНОРОДНОМ МИОКАРДЕ
|
Введение 4
1. Механическая неоднородность миокарда 8
2. Обзор моделей мышечного сокращения 12
Теория скользящих нитей 15
Кинетика Ca2+ и TnC 23
3. Модель мышечного сокращения, используемая для виртуального и гибридного дуплета 30
Постулаты, лежащие в основе модели мышечного сокращения 31
Механический блок модели 35
Описание активации 42
Полная система уравнений модели 47
Численная реализация модели 49
4. Виртуальный дуплет – математическая модель мышечного дуплета 52
5. Гибридный дуплет 57
Описание микромеханографической установки 58
Блок сопряжения с компьютером 62
6. Алгоритмы и программа организации взаимодействия элементов гибридного дуплета в физиологическом эксперименте 64
Алгоритмы организации взаимодействия элементов гибридного дуплета 64
Организация взаимодействия между элементами в первой упрощенной модели гибридного дуплета 68
Регуляризация задачи 73
Вторая упрощенная модель гибридного дуплета 77
Пакет программ управления экспериментальной установкой для гибридного дуплета 84
Реальное время 85
Операционные системы реального времени 86
Расширения реального времени для Windows NT 88
Программа управления установкой 90
Программа обработки экспериментальных данных 94
7. Результаты численных экспериментов на последовательном виртуальном дуплете 97
Характеристики сократительной функции сердечной мышцы 97
Сравнение сократительной активности мышц в дуплете и изоляции 99
Неоднородный виртуальный дуплет с задержками стимуляции его элементов 102
Механизмы, лежащие в основе эффектов взаимодействия мышц в дуплете 112
8. Результаты численных экспериментов на параллельном виртуальном дуплете 122
9. Эксперименты на гибридном дуплете 129
10. Расширение метода дуплетов: одномерные модели неоднородной сердечной ткани 133
Заключение 139
Библиографический список использованной литературы 144
1. Механическая неоднородность миокарда 8
2. Обзор моделей мышечного сокращения 12
Теория скользящих нитей 15
Кинетика Ca2+ и TnC 23
3. Модель мышечного сокращения, используемая для виртуального и гибридного дуплета 30
Постулаты, лежащие в основе модели мышечного сокращения 31
Механический блок модели 35
Описание активации 42
Полная система уравнений модели 47
Численная реализация модели 49
4. Виртуальный дуплет – математическая модель мышечного дуплета 52
5. Гибридный дуплет 57
Описание микромеханографической установки 58
Блок сопряжения с компьютером 62
6. Алгоритмы и программа организации взаимодействия элементов гибридного дуплета в физиологическом эксперименте 64
Алгоритмы организации взаимодействия элементов гибридного дуплета 64
Организация взаимодействия между элементами в первой упрощенной модели гибридного дуплета 68
Регуляризация задачи 73
Вторая упрощенная модель гибридного дуплета 77
Пакет программ управления экспериментальной установкой для гибридного дуплета 84
Реальное время 85
Операционные системы реального времени 86
Расширения реального времени для Windows NT 88
Программа управления установкой 90
Программа обработки экспериментальных данных 94
7. Результаты численных экспериментов на последовательном виртуальном дуплете 97
Характеристики сократительной функции сердечной мышцы 97
Сравнение сократительной активности мышц в дуплете и изоляции 99
Неоднородный виртуальный дуплет с задержками стимуляции его элементов 102
Механизмы, лежащие в основе эффектов взаимодействия мышц в дуплете 112
8. Результаты численных экспериментов на параллельном виртуальном дуплете 122
9. Эксперименты на гибридном дуплете 129
10. Расширение метода дуплетов: одномерные модели неоднородной сердечной ткани 133
Заключение 139
Библиографический список использованной литературы 144
В течение последних десятилетий наметился значительный прогресс в математическом описании функций различных органов и в особенности сердечно-сосудистой системы. Это стало возможным благодаря исключительно интенсивной аналитической работе экспериментаторов: морфологов, биохимиков, физиологов и специалистов по молекулярной биологии. В результате этой работы кристаллизованы морфофункциональные схемы различных клеток, в рамках которых упорядоченно в пространстве и времени протекают различные физико-химические и биохимические процессы, образующие весьма сложное переплетение.
Вторым, очень важным обстоятельством, способствующим привлечению математического аппарата в физиологию, является тщательное экспериментальное определение констант скоростей многочисленных внутриклеточных реакций, определяющих функции клеток. Без знания таких констант не- возможно формально-математическое описание внутриклеточных процессов. И, наконец, третьим условием, определившим успех математического моделирования в биологии, явилось развитие мощных вычислительных средств в виде персональных компьютеров и суперкомпьютеров. Это связано с тем, что обычно процессы, контролирующие ту или иную функцию клеток или органов, многочисленны, охвачены петлями прямой и обратной связи и, следовательно, описываются системами нелинейных уравнений. Такие уравнения не решаются аналитически, но могут быть решены численно при помощи компьютера.
Численные эксперименты на моделях, способные воспроизводить широкий класс явлений в клетках, органах и организме, позволяют оценить правильность предположений, сделанных при построении моделей. Заметим, что, хотя в качестве постулатов моделей используются экспериментальные факты, необходимость некоторых допущений и предположений является важным теоретическим компонентом моделирования. Эти допущения и предположения являются гипотезами, которые могут быть подвергнуты экспериментальной проверке. Таким образом, модели становятся источниками гипотез, и притом, экспериментально верифицируемых. Эксперимент, направленный на проверку данной гипотезы, может опровергнуть или подтвердить ее и тем самым способствовать уточнению модели. Такое взаимодействие моделирования и эксперимента происходит непрерывно, приводя ко все более глубокому и точному пониманию явления: эксперимент уточняет модель, новая модель выдвигает новые гипотезы, эксперимент уточняет новую модель и так далее.
В данной работе были разработаны математические модели для исследования проблемы механической неоднородности сердечной мышцы. В настоящее время мы являемся свидетелями необычайно быстро растущего интереса физиологов к тонкой пространственно-временной организации кардиомиоцитов в стенках камер сердечной мышцы. На смену прежним представлениям об однородности электрических и механических характеристик кардиомиоцитов рабочего миокарда, которые лежали в основе электрофизиологии и биомеханики сердечной мышцы, пришло понимание того, что миокард существенно неоднороден. Такое понимание требует глубокой ревизии как электрофизиологических, так и биомеханических принципов, лежащих в основе функции сердечной мышцы.
Изучение влияния механической неоднородности на целом сердце затруднено ввиду взаимного влияния многих условий сокращения сердечной мышцы. Поэтому для выявления основных закономерностей механического взаимодействия между различными регионами сердца была разработана физиологическая модель механической неоднородности миокарда - мышечный дуплет [1-4]. Дуплет представляет собой пару мышц с различными механическими свойствами, соединенных параллельно или последовательно. В рамках представленной работы разработана математическая модель мышечного дуплета – виртуальный дуплет, элементами которого являются виртуальные мышцы – математические модели мышечного сокращения. Виртуальный дуплет опирается на адекватные модели мышечного сокращения, описывающие каждый из ее элементов. В настоящей работе была использована математическая модель сокращения изолированной мышцы миокарда, разработанная ранее сотрудниками Института иммунологии и физиологии [2].
Наряду с виртуальным дуплетом в рамках работы был разработан и внедрен новый экспериментально-теоретический метод для изучения механической неоднородности миокарда – метод гибридного дуплета. В гибридном дуплете в реальном времени взаимодействуют препарат миокарда и виртуальная мышца. Метод гибридного дуплета сочетает преимущества математического моделирования с экспериментальной достоверностью физиологических экспериментов. Требование реального времени взаимодействия эле- ментов гибридного дуплета означает обеспечение динамического изменения условий сокращения обоих элементов дуплета в зависимости от текущего состояния партнера. Для реализации метода гибридного дуплета была необходима программная среда с жестко установленным дискретом времени для расчета математической модели и организации взаимодействия между элементами дуплета. В связи с этим возникали дополнительные сложности в разработке программного обеспечения для экспериментальной установки, которые были успешно преодолены.
В первой главе диссертационной представлены физиологические аспекты проблемы механической неоднородности миокарда. Во второй главе дан краткий обзор существующих математических моделей мышечного сокращения. Базовая математическая модель мышечного сокращения, использованная при разработке виртуального и гибридного дуплетов, описана в главе 3 работы. В главе 4 приводится построение математических моделей мышечных дуплетов - последовательного и параллельного виртуальных дуплетов. Глава 5 посвящена методу гибридного дуплета. В первой части главы 5 кратко описана аппаратная часть экспериментальной установки для проведения экспериментов на гибридном дуплете. Разработанные алгоритмы для организации динамического взаимодействия элементов гибридного дуплета представлены во второй части главы. Здесь же приводится описание разработанного пакета программ для управления экспериментальной установкой, в котором были применены эти алгоритмы. В главах 7, 8 и 9 представлены результаты численных и физиологических экспериментов на последовательном и параллельном виртуальных дуплетах и гибридном дуплете. В последней главе описана одномерная математическая модель неоднородной ткани в виде цепочки последовательно соединенных виртуальных мышц. В этой же главе сравниваются результаты экспериментов на последовательных дуплетах и одномерных моделях механической неоднородности. В заключении содержатся основные выводы, сделанные в работе.
Вторым, очень важным обстоятельством, способствующим привлечению математического аппарата в физиологию, является тщательное экспериментальное определение констант скоростей многочисленных внутриклеточных реакций, определяющих функции клеток. Без знания таких констант не- возможно формально-математическое описание внутриклеточных процессов. И, наконец, третьим условием, определившим успех математического моделирования в биологии, явилось развитие мощных вычислительных средств в виде персональных компьютеров и суперкомпьютеров. Это связано с тем, что обычно процессы, контролирующие ту или иную функцию клеток или органов, многочисленны, охвачены петлями прямой и обратной связи и, следовательно, описываются системами нелинейных уравнений. Такие уравнения не решаются аналитически, но могут быть решены численно при помощи компьютера.
Численные эксперименты на моделях, способные воспроизводить широкий класс явлений в клетках, органах и организме, позволяют оценить правильность предположений, сделанных при построении моделей. Заметим, что, хотя в качестве постулатов моделей используются экспериментальные факты, необходимость некоторых допущений и предположений является важным теоретическим компонентом моделирования. Эти допущения и предположения являются гипотезами, которые могут быть подвергнуты экспериментальной проверке. Таким образом, модели становятся источниками гипотез, и притом, экспериментально верифицируемых. Эксперимент, направленный на проверку данной гипотезы, может опровергнуть или подтвердить ее и тем самым способствовать уточнению модели. Такое взаимодействие моделирования и эксперимента происходит непрерывно, приводя ко все более глубокому и точному пониманию явления: эксперимент уточняет модель, новая модель выдвигает новые гипотезы, эксперимент уточняет новую модель и так далее.
В данной работе были разработаны математические модели для исследования проблемы механической неоднородности сердечной мышцы. В настоящее время мы являемся свидетелями необычайно быстро растущего интереса физиологов к тонкой пространственно-временной организации кардиомиоцитов в стенках камер сердечной мышцы. На смену прежним представлениям об однородности электрических и механических характеристик кардиомиоцитов рабочего миокарда, которые лежали в основе электрофизиологии и биомеханики сердечной мышцы, пришло понимание того, что миокард существенно неоднороден. Такое понимание требует глубокой ревизии как электрофизиологических, так и биомеханических принципов, лежащих в основе функции сердечной мышцы.
Изучение влияния механической неоднородности на целом сердце затруднено ввиду взаимного влияния многих условий сокращения сердечной мышцы. Поэтому для выявления основных закономерностей механического взаимодействия между различными регионами сердца была разработана физиологическая модель механической неоднородности миокарда - мышечный дуплет [1-4]. Дуплет представляет собой пару мышц с различными механическими свойствами, соединенных параллельно или последовательно. В рамках представленной работы разработана математическая модель мышечного дуплета – виртуальный дуплет, элементами которого являются виртуальные мышцы – математические модели мышечного сокращения. Виртуальный дуплет опирается на адекватные модели мышечного сокращения, описывающие каждый из ее элементов. В настоящей работе была использована математическая модель сокращения изолированной мышцы миокарда, разработанная ранее сотрудниками Института иммунологии и физиологии [2].
Наряду с виртуальным дуплетом в рамках работы был разработан и внедрен новый экспериментально-теоретический метод для изучения механической неоднородности миокарда – метод гибридного дуплета. В гибридном дуплете в реальном времени взаимодействуют препарат миокарда и виртуальная мышца. Метод гибридного дуплета сочетает преимущества математического моделирования с экспериментальной достоверностью физиологических экспериментов. Требование реального времени взаимодействия эле- ментов гибридного дуплета означает обеспечение динамического изменения условий сокращения обоих элементов дуплета в зависимости от текущего состояния партнера. Для реализации метода гибридного дуплета была необходима программная среда с жестко установленным дискретом времени для расчета математической модели и организации взаимодействия между элементами дуплета. В связи с этим возникали дополнительные сложности в разработке программного обеспечения для экспериментальной установки, которые были успешно преодолены.
В первой главе диссертационной представлены физиологические аспекты проблемы механической неоднородности миокарда. Во второй главе дан краткий обзор существующих математических моделей мышечного сокращения. Базовая математическая модель мышечного сокращения, использованная при разработке виртуального и гибридного дуплетов, описана в главе 3 работы. В главе 4 приводится построение математических моделей мышечных дуплетов - последовательного и параллельного виртуальных дуплетов. Глава 5 посвящена методу гибридного дуплета. В первой части главы 5 кратко описана аппаратная часть экспериментальной установки для проведения экспериментов на гибридном дуплете. Разработанные алгоритмы для организации динамического взаимодействия элементов гибридного дуплета представлены во второй части главы. Здесь же приводится описание разработанного пакета программ для управления экспериментальной установкой, в котором были применены эти алгоритмы. В главах 7, 8 и 9 представлены результаты численных и физиологических экспериментов на последовательном и параллельном виртуальных дуплетах и гибридном дуплете. В последней главе описана одномерная математическая модель неоднородной ткани в виде цепочки последовательно соединенных виртуальных мышц. В этой же главе сравниваются результаты экспериментов на последовательных дуплетах и одномерных моделях механической неоднородности. В заключении содержатся основные выводы, сделанные в работе.
Основная проблема, которой посвящена работа, - биомеханика неоднородного миокарда. Эта проблема возникла после того, как экспериментально было выяснено, что в толще стенок желудочков клетки миокарда отличаются по своим биомеханическим, электрофизиологическим и биохимическим характеристикам. Важно, что до этих наблюдений вся биомеханика сердечной мышцы была построена на предположении, что миокард однороден, т.е. состоит из тождественных по своим характеристикам кардиомиоцитов.
Для выяснения фундаментальных закономерностей механического взаимодействия между неоднородными сократительными элементами миокарда потребовалась разработка простейших и вместе с тем фундаментальных экспериментальных и теоретических моделей неоднородного миокарда. Такими экспериментальными моделями стал мышечный дуплет, состоящий всего лишь из двух неоднородных биологических объектов, например, двух мышц, иссеченных из живого сердца экспериментальных животных. Экспериментальная работа, проведенная на таких физиологических моделях, позволила вскрыть ряд закономерностей, присущих неоднородному миокарду. Однако эти исследования не могли дать сведений о природе молекулярно- клеточных механизмов, ответственных за механизмы выясненных закономерностей.
Вместе с тем ко времени проведения работ на дуплетах был известен обширный ряд фактов, вскрывающий молекулярно-клеточные механизмы мышечного сокращения. Была кристаллизована схема этого явления, в рамках которой в пространстве и во времени были упорядочены различные физико-химические процессы, контролирующие сокращение клеток сердечной мышцы и, что особенно важно, с достаточно большой вероятностью были измерены характерные константы этих процессов.
Изучение механизмов мышечного сокращения выявило его необычайную сложность: сложное переплетение процессов, контролирующих сокращение, наличие петель положительной и отрицательной обратной связи. Таким образом, для понимания регуляции сократительного акта в клетках сердечной мышцы требовалось построение математической модели. Такая модель была построена в отделе молекулярно-клеточной биомеханики Института иммунологии и физиологии УрО РАН.
В рамках данной работы были поставлены задачи разработать теоретическую модель мышечного дуплета и вместе с экспериментаторами создать гибридную модель дуплета, в которой живая мышца в реальном времени взаимодействует с ее виртуальным партнером. Решение этих задач пре- следовало несколько целей:
1. Убедиться будет ли механическое поведение виртуальных и гибридных дуплетов качественно совпадать с механическим поведением биологических дуплетов? Если да, то какие молекулярно-клеточные процессы ответственны за динамическое взаимодействие между неоднородными элементами дуплета?
2. Выяснить, способны ли виртуальные и гибридные дуплеты предсказывать новые закономерности в неоднородном миокарде, которые в дальнейшем будут подтверждены экспериментально на биологических дуплетах?
Мы полагаем, что представленная работа дала ответы на эти вопросы и позволила сделать следующие выводы.
В диссертационной работе построены модели механически неоднородного миокарда: математические модели – виртуальный дуплет и одномерная модель неоднородной миокардиальной ткани, экспериментально- теоретическая модель – гибридный дуплет. Получены следующие результаты.
1. На основе имеющейся математической модели мышечного сокращения разработаны уравнения для последовательного и параллельного виртуального дуплета. Построенные математические модели неоднородного миокарда – виртуальные дуплеты имитируют механические и химические эффекты, возникающие в мышцах неоднородной миокардиальной системы.
2. Совместно с сотрудниками экспериментальной лаборатории биомеханики мышц Института иммунологии и физиологии УрО РАН была разработана экспериментально-теоретическая модель неоднородного миокарда – последовательный гибридный дуплет, в котором взаимодействие биологического препарата (папиллярной мышцы или трабекулы желудочка сердца) и математической модели мышечного сокращения происходит в реальном времени.
3. Для организации взаимодействия элементов гибридного дуплета разработано и внедрено специальное программное обеспечение. Создан пакет программ управления экспериментальной установкой с использованием HyperKernel - подсистемы реального времени ОС Windows NT. Программа управления в реальном времени обеспечивает обмен сигналов с аппаратной частью установки и параллельный расчет математической модели мышечного сокращения с дискретным входным воздействием.
4. Разработан и внедрен специальный алгоритм организации взаимодействия элементов гибридного дуплета, имитирующий взаимодействие между двумя биологическими объектами. Для этого построена «идеальная» модель гибридного дуплета, в рамках которой найдены условия сходимости рекуррентного метода приближенного решения системы к «идеальному», т.е. решению тождественно удовлетворяющему соответствующим уравнениям связи. Результаты исследования показали, что даже в отсутствии внешних и внутренних помех требуется регуляризация предложенного метода организации взаимодействия. Кроме того, благодаря анализу разработанного алгоритма, показано, что устойчивость метода зависит от способа управления элементами гибридного дуплета. Так оказалось, что более устойчива схема, в рамках которой быстрая мышца дуплета управляется изменением длины, а медленная мышца - изменением нагрузки. Применение на практике разработанных алгоритмов организации взаимодействия элементов гибридного дуплета показало их удовлетворительное соответствие поставленной задаче.
5. Жесткие ограничения на время расчета математической модели в режиме реального времени в экспериментах на гибридных дуплетах, потребовали исследования жесткости системы дифференциальных уравнений модели. На основе анализа, который показал, что система относится к классу жестких, для ее численного решения реализован явно-неявный метод Эйлера и выбран приемлемый шаг интегрирования, согласующийся с дискретным тактом управления экспериментальной установки гибридного дуплета.
6. Для обработки экспериментальных данных разработана программа, позволяющая находить характеристики сокращения дуплета и его элементов, оформлять графически полученные результаты. Эта программа использовалась для обработки результатов как численных, так и физиологических экспериментов.
7. С помощью виртуального дуплета получены новые в рамках физиологии неоднородного миокарда закономерности. С учетом предсказаний на виртуальных дуплетах, проведены эксперименты на гибридных дуплетах. Качественное совпадение результатов, полученных на виртуальных и гибридных дуплетах, показывает, что математическая модель неоднородного миокарда хорошо воспроизводит результаты физиологических экспериментов.
8. В рамках виртуального дуплета выявлены и проанализированы возможные внутриклеточные механизмы, ответственные за наблюдаемые биомеханические эффекты.
9. Разработана одномерная модель неоднородного миокарда, которая является расширением метода виртуальных последовательных дуплетов. В рамках этой модели исследованы различные типы распределения механических свойств кардиомиоцитов в цепочке: однородные цепочки, цепочки с градуальным изменением свойств элементов и цепочки, в которых механические свойства кардиомиоцитов подчинялись равномерному случайному распределению, как это имеет место при некоторых видах патологии или в стареющем сердце.
10. В рамках построенных математических и экспериментальных моделей неоднородности получены результаты, описывающие связь между градиентами механических свойств миокарда и последовательностью активации клеток. Найдено, что механическая функция неоднородного миокарда обладает наибольшей сократительной устойчивостью к специфической задержке активации элементов только в том случае, если задерживается активация более быстрых элементов неоднородной миокардиальной системы. Это предсказание модели находит подтверждение в экспериментах по изучению связи между последовательностью активации и трансмуральными механическими свойствами кардиомиоцитов левого желудочка теплокровных животных.
Для выяснения фундаментальных закономерностей механического взаимодействия между неоднородными сократительными элементами миокарда потребовалась разработка простейших и вместе с тем фундаментальных экспериментальных и теоретических моделей неоднородного миокарда. Такими экспериментальными моделями стал мышечный дуплет, состоящий всего лишь из двух неоднородных биологических объектов, например, двух мышц, иссеченных из живого сердца экспериментальных животных. Экспериментальная работа, проведенная на таких физиологических моделях, позволила вскрыть ряд закономерностей, присущих неоднородному миокарду. Однако эти исследования не могли дать сведений о природе молекулярно- клеточных механизмов, ответственных за механизмы выясненных закономерностей.
Вместе с тем ко времени проведения работ на дуплетах был известен обширный ряд фактов, вскрывающий молекулярно-клеточные механизмы мышечного сокращения. Была кристаллизована схема этого явления, в рамках которой в пространстве и во времени были упорядочены различные физико-химические процессы, контролирующие сокращение клеток сердечной мышцы и, что особенно важно, с достаточно большой вероятностью были измерены характерные константы этих процессов.
Изучение механизмов мышечного сокращения выявило его необычайную сложность: сложное переплетение процессов, контролирующих сокращение, наличие петель положительной и отрицательной обратной связи. Таким образом, для понимания регуляции сократительного акта в клетках сердечной мышцы требовалось построение математической модели. Такая модель была построена в отделе молекулярно-клеточной биомеханики Института иммунологии и физиологии УрО РАН.
В рамках данной работы были поставлены задачи разработать теоретическую модель мышечного дуплета и вместе с экспериментаторами создать гибридную модель дуплета, в которой живая мышца в реальном времени взаимодействует с ее виртуальным партнером. Решение этих задач пре- следовало несколько целей:
1. Убедиться будет ли механическое поведение виртуальных и гибридных дуплетов качественно совпадать с механическим поведением биологических дуплетов? Если да, то какие молекулярно-клеточные процессы ответственны за динамическое взаимодействие между неоднородными элементами дуплета?
2. Выяснить, способны ли виртуальные и гибридные дуплеты предсказывать новые закономерности в неоднородном миокарде, которые в дальнейшем будут подтверждены экспериментально на биологических дуплетах?
Мы полагаем, что представленная работа дала ответы на эти вопросы и позволила сделать следующие выводы.
В диссертационной работе построены модели механически неоднородного миокарда: математические модели – виртуальный дуплет и одномерная модель неоднородной миокардиальной ткани, экспериментально- теоретическая модель – гибридный дуплет. Получены следующие результаты.
1. На основе имеющейся математической модели мышечного сокращения разработаны уравнения для последовательного и параллельного виртуального дуплета. Построенные математические модели неоднородного миокарда – виртуальные дуплеты имитируют механические и химические эффекты, возникающие в мышцах неоднородной миокардиальной системы.
2. Совместно с сотрудниками экспериментальной лаборатории биомеханики мышц Института иммунологии и физиологии УрО РАН была разработана экспериментально-теоретическая модель неоднородного миокарда – последовательный гибридный дуплет, в котором взаимодействие биологического препарата (папиллярной мышцы или трабекулы желудочка сердца) и математической модели мышечного сокращения происходит в реальном времени.
3. Для организации взаимодействия элементов гибридного дуплета разработано и внедрено специальное программное обеспечение. Создан пакет программ управления экспериментальной установкой с использованием HyperKernel - подсистемы реального времени ОС Windows NT. Программа управления в реальном времени обеспечивает обмен сигналов с аппаратной частью установки и параллельный расчет математической модели мышечного сокращения с дискретным входным воздействием.
4. Разработан и внедрен специальный алгоритм организации взаимодействия элементов гибридного дуплета, имитирующий взаимодействие между двумя биологическими объектами. Для этого построена «идеальная» модель гибридного дуплета, в рамках которой найдены условия сходимости рекуррентного метода приближенного решения системы к «идеальному», т.е. решению тождественно удовлетворяющему соответствующим уравнениям связи. Результаты исследования показали, что даже в отсутствии внешних и внутренних помех требуется регуляризация предложенного метода организации взаимодействия. Кроме того, благодаря анализу разработанного алгоритма, показано, что устойчивость метода зависит от способа управления элементами гибридного дуплета. Так оказалось, что более устойчива схема, в рамках которой быстрая мышца дуплета управляется изменением длины, а медленная мышца - изменением нагрузки. Применение на практике разработанных алгоритмов организации взаимодействия элементов гибридного дуплета показало их удовлетворительное соответствие поставленной задаче.
5. Жесткие ограничения на время расчета математической модели в режиме реального времени в экспериментах на гибридных дуплетах, потребовали исследования жесткости системы дифференциальных уравнений модели. На основе анализа, который показал, что система относится к классу жестких, для ее численного решения реализован явно-неявный метод Эйлера и выбран приемлемый шаг интегрирования, согласующийся с дискретным тактом управления экспериментальной установки гибридного дуплета.
6. Для обработки экспериментальных данных разработана программа, позволяющая находить характеристики сокращения дуплета и его элементов, оформлять графически полученные результаты. Эта программа использовалась для обработки результатов как численных, так и физиологических экспериментов.
7. С помощью виртуального дуплета получены новые в рамках физиологии неоднородного миокарда закономерности. С учетом предсказаний на виртуальных дуплетах, проведены эксперименты на гибридных дуплетах. Качественное совпадение результатов, полученных на виртуальных и гибридных дуплетах, показывает, что математическая модель неоднородного миокарда хорошо воспроизводит результаты физиологических экспериментов.
8. В рамках виртуального дуплета выявлены и проанализированы возможные внутриклеточные механизмы, ответственные за наблюдаемые биомеханические эффекты.
9. Разработана одномерная модель неоднородного миокарда, которая является расширением метода виртуальных последовательных дуплетов. В рамках этой модели исследованы различные типы распределения механических свойств кардиомиоцитов в цепочке: однородные цепочки, цепочки с градуальным изменением свойств элементов и цепочки, в которых механические свойства кардиомиоцитов подчинялись равномерному случайному распределению, как это имеет место при некоторых видах патологии или в стареющем сердце.
10. В рамках построенных математических и экспериментальных моделей неоднородности получены результаты, описывающие связь между градиентами механических свойств миокарда и последовательностью активации клеток. Найдено, что механическая функция неоднородного миокарда обладает наибольшей сократительной устойчивостью к специфической задержке активации элементов только в том случае, если задерживается активация более быстрых элементов неоднородной миокардиальной системы. Это предсказание модели находит подтверждение в экспериментах по изучению связи между последовательностью активации и трансмуральными механическими свойствами кардиомиоцитов левого желудочка теплокровных животных.



