Актуальность темы. Сегодня наблюдается взрывной рост количества
информации, создаваемой людьми и машинами на естественном языке. Аналитическое агентство IDC прогнозирует рост совокупного объема данных,
накопленных человечеством, до 163 зеттабайт к 2025 году. Основной частью
таких данных являются неструктурированные данные, такие как фотографии, видеозаписи, аудиозаписи, а также тексты на естественном языке.
Язык обладает многозначностью, которая проявляется на разных уровнях:
от уровня отдельных звуков в устной речи до уровня значения отдельных слов
и предложений в письменном тексте. Несмотря на то, что люди хорошо справляются с разрешением многозначности самостоятельно, проблема машинного
понимания естественного языка является сложной и требует специальных автоматических методов. Постоянное увеличение интенсивности потока входящей
текстовой информации делает все более важной задачу математического моделирования естественного языка, в частности –– русского языка.
Важнейшей проблемой является лексическая многозначность, требующая
от машины понимания контекста и предметной области, в которой употребляется каждое многозначное слово. Такие сведения представляются в семантических
сетях –– специальных высококачественных базах знаний, представляющих машиночитаемые сведения об окружающем мире в виде понятий и связей между
ними. Связи между понятиями задают семантическую иерархию, которая позволяет решать различные задачи машинного понимания естественного языка и
является критически важным элементом семантических сетей. В настоящее время, наиболее известной семантической сетью в области обработки естественного
языка является семантическая сеть WordNet для английского языка, связи в которой формируются между синсетами –– множествами синонимов.
Семантические сети применяются при решении большого количества
важнейших прикладных задач обработки естественного языка. В системах
разрешения лексической многозначности и системах машинного перевода, семантические сети представляют известные значения слов заданного языка. В
вопросно-ответных системах, таких как IBM Watson, семантические сети задают сведения об объектах предметной области и связях между ними. В системах
поиска сущностей, таких как Google Knowledge Graph, семантические сети
представляют атрибуты, понятные и людям, и машинам. Высококачественные
семантические сети широко используются в качестве золотого стандарта для
оценки эффективности систем автоматической обработки естественного языка.