ВОЛОКОННО-ОПТИЧЕСКИЕ СБОРКИ НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКИХ СВЕТОВОДОВ ДЛЯ СРЕДНЕГО ИНФРАКРАСНОГО ДИАПАЗОНА
|
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК, Scopus и Web of Science:
Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК, Scopus и Web of Science:
Актуальность темы исследования. Регулярные оптические волоконные сборки представляют собой массивы упорядоченно упакованных одиночных оптических волокон или многожильные оптические волокна с регулярным размещением, в которых каждый волоконный элемент является световедущим. В настоящее время разработано несколько видов волоконных сборок для среднего инфракрасного (ИК) диапазона: сборки из халькогенидных, галогенидсеребряных (поликристаллических) и полых волокон [1-5]. Функциональные свойства сборок значительно различаются от вида к виду, но все они обладают рядом общих недостатков, таких как большие оптические потери по длине сборки, перекрестные помехи, снижающие контрастность изображения, малое пространственное разрешение. Сборки из халькогенидных волокон имеют пики поглощения в области прозрачности, неудовлетворительные механические свойства и низкую температуру размягчения, а сборки из полых волокон - ограничения по длине и минимальному диаметру волокон, связанному с высокими оптическими потерями.
Существует большая потребность в эффективных волоконных сборках, предназначенных для передачи излучения в диапазоне 2 - 50 мкм и востребованных для применения в промышленной и медицинской термографии, ИК микроскопии и спектроскопии, в качестве канала доставки лазерного излучения, что является весьма актуальной задачей.
Первые работы по волоконным сборкам на основе двуслойных световодов, получаемых методом экструзии из кристаллов системы АдС1 - АдВг, опубликованы в работе [4]. Сборки прозрачны без окон поглощения в спектральном диапазоне от 2 до 18 мкм, нетоксичны, негигроскопичны, обладают прекрасными механическими свойствами - гибкие и пластичные, но их геометрические параметры хуже, чем для полых и халькогенидных волоконных сборок. Это связано с технологией изготовления сборок методом многостадийной экструзии двуслойных световодов, что приводит к формированию неровной границы раздела «световод-матрица» (матрица образуется за счет оболочек двуслойных световодов). Это, в свою очередь, вызывает ухудшение функциональных характеристик сборок.
В связи с разработкой новых технологий изготовления ИК волоконных сборок на основе галогенидсеребряных, в том числе модифицированных световодов, расчет, моделирование, изготовление и комплексное изучение функциональных свойств (изучение поляризации света, формирование и обработка оптических изображений, детектирование излучения) является актуальной научно-технической задачей, соответствующей паспорту специальности 01.04.05 - Оптика.
Степень разработанности темы исследования. Работа выполнялась согласно: программе развития Уральского федерального университета им. Б.Н. Ельцина на 2010 - 2020 гг. п.п. 2.2.3 - создание и развитие инновационно¬внедренческих центров; Единому государственному заказу по темам: «Создание и изучение свойств новых органических и неорганических материалов на основе монокристаллических, гетероциклических и макроциклических соединений» (№ гос. регистрации Н687.42Б.037/14, Н687.42Б.005/17); Всероссийской программе
поддержки коммерчески ориентированных научно-технических проектов молодых ученых У.М.Н.И.К.: 2011 - 2013 гг., проекты № 14151, № 17179 «Моделирование, синтез, изготовление новых кристаллов и ИК-световодов на основе твердых растворов AgBr - (КРС-5)»; Международной программе мобильности «Erasmus +» 2018 г. (Лимерикский университет, Ирландия).
Профессор д.т.н. Л.В. Жукова стояла у истоков создания поликристаллической компонентной базы для оптики и фотоники среднего ИК диапазона (2-50 мкм), в то время, как на развитие технологии поликристаллических световодов большое влияние оказала научная школа академиков Е.М. Дианова и Г.Т. Петровского. Разработка регулярных волоконных сборок на основе галогенидсеребряных световодов (система AgCl - AgBr), помимо научного коллектива инновационно-внедренческого центра «Центр инфракрасных волоконных технологий» (ИВЦ «ЦИВТ») при Уральском Федеральном Университете, проводится двумя научными группами - Тель-Авивского университета под руководством профессора А. Кацира (Израиль) [4] и коллективом компании Art-Photonics под руководством В.Г. Артюшенко (Германия) [6].
Цель работы. Разработка научных основ технологии изготовления волоконно-оптических сборок высокого разрешения на основе галогенидсеребряных, в том числе модифицированных световодов, работающих в среднем инфракрасном диапазоне и исследование их функциональных свойств.
Для достижения цели необходимо решить следующие задачи:
1. Провести численное моделирование волоконных сборок для работы в среднем ИК диапазоне спектра с целью выявления и достижения высокого пространственного разрешения и низких перекрестных помех.
2. Разработать технологии изготовления миниатюризированных регулярных ИК волоконных сборок двух типов: с сетчатой укладкой массива световодов в единую матрицу и с гексагональной укладкой механически собранных однослойных световодов минимального диаметра; смоделировать и изготовить ИК волоконные сборки двумя способами.
3. Исследовать функциональные свойства ИК волоконных сборок: диапазон пропускания, оптические потери, включая затухание по длине единичного волокна и потери на изгиб, пространственное разрешение, перекрестные помехи, модовое распределение на длине волны СО2 лазера (10,6 мкм) в дальнем поле, поляризационные свойства, влияние нагрева волоконных сборок на искажение передаваемого сигнала.
4. Экспериментально доказать применимость и востребованность многофункциональных волоконных сборок для использования в промышленной и медицинской ИК-термографии.
Научная новизна. В диссертационной работе впервые решены задачи:
1. Применяя программные пакеты SMTP и COMSOL Multiphysics, реализующие модернизированные методы моментов и конечных элементов, соответственно, проведено численное моделирование структуры, состава и режимов работы в диапазонах длин волн 8 - 14 мкм, 9,2 - 9,4 мкм и 10,6 мкм волоконных сборок на основе световодов, получаемых методом экструзии из кристаллов твердых растворов систем AgCl - AgBr, AgBr - TlI и AgBr - (КРС-5). Установлена взаимосвязь количества единичных волокон в сборке с величиной перекрестных помех.
2. Смоделированы и изготовлены волоконные сборки с гексагональной укладкой механически собранных световодов с рекордно малым диаметром - 110 мкм состава AgClo,25Bro,75 и длиной 3 м для работы в спектральном диапазоне 2 - 20 мкм. Заявка на изобретение № 2019104278 от 15.02.2019.
3. Смоделированы и изготовлены новые волоконные сборки сетчатой структуры для работы на длине волны 10,6 мкм, состоящие из 49 единичных волокон состава AgCl0,5Br0,5, помещенных в единую матрицу состава AgCl0,75Br0,25 диаметром 1120 мкм.
4. На основании моделирования получен новый класс регулярных ИК волоконных сборок гексагональной структуры при механической сборке однослойных световодов на основе систем AgBr - TlI и AgBr - (КРС-5), что позволило расширить диапазон пропускания до 25 мкм и создать волоконные сборки, устойчивые к фото- и радиационному излучению. Заявка на изобретение № 2019104333 от 15.02.2019.
5. Исследованы функциональные свойства ИК волоконных сборок: диапазон оптической прозрачности составляет от 2,0 до 20,0 - 25,0 мкм, в зависимости от состава, оптические потери по длине (X = 10,6 мкм) равны 0,4 дБ/м для сборок, полученных механической укладкой, и 5,0 дБ/м для сборок с единой матрицей, перекрестные помехи составляют 5% для сборок с механической укладкой, пространственное разрешение сборок соответствует размеру единичного световода (110 мкм). Обнаружено, что волокна в сборке проявляют поляризационные свойства.
Теоретическая и практическая значимость работы.
1. Теоретически рассчитаны, с помощью специализированных компьютерных программ по моделированию, оптимальные структуры регулярных волоконных сборок, работающих на длинах волн 9,2 - 9,4 мкм, 10,6 мкм и 8 - 14 мкм; достоверность расчетов подтверждена экспериментально.
2. Теоретически найден частный случай зависимости перекрестных помех от количества единичных волокон в сборке с гексагональной укладкой и общей матрицей, для работы в диапазоне длин волн 9,2 - 9,4 мкм;
3. Разработан стенд для измерения оптических потерь, в том числе на изгиб и распределения дальнего поля излучения СО2 лазера (10,6 мкм) прошедшего сборку, а также стенд для измерения перекрестных помех.
4. Впервые изучены поляризационные свойства галогенидсеребряных световодов и волоконных сборок. Установлена линейная зависимость детектируемой температуры от нагрева дистального конца волоконной сборки, исключаемая с помощью соответствующего программно-аппаратного обеспечения.
5. Разработан полный технологический цикл изготовления волоконных сборок, включающий синтез высокочистой однофазной шихты гидрохимическим методом (термозонной кристаллизации-синтеза), выращивание монокристаллов (патент РФ №. 2495459), получение заготовок и преформ, экструзия световодов (положительное решение по заявке на патент РФ № 2018112863) и готовых волоконных сборок.
6. Для получения световодов рекордно малого диаметра (100 - 110 мкм) (Рисунок 8) разработана и изготовлена специальная оснастка.
7. Разработано два новых способа изготовления регулярных ИК волоконных
сборок сетчатой и гексагональной структуры. Сборки сетчатой структуры получают комбинированным способом, включающим горячее прессование
монокристаллических пластин, укладку их в штабель, формирование сложной преформы и экструзию волоконных сборок (Рисунок 6). Химические составы волокон и матрицы подобраны в соответствии с проведенным моделированием. Способ позволяет достичь четкой границы раздела волокна и матрицы. Второй способ включает гексагональную укладку механически собранных однослойных световодов, отвечающих смоделированным составам систем AgCl - AgBr, AgBr - TlI и AgBr - (КРС-5) (Рисунок 8).
8. Доказана пригодность разрабатываемых многофункциональных волоконных сборок для использования в промышленной и медицинской термографии - произведена апробация новых волоконных сборок в системах данного назначения. Оформлены две заявки на изобретение «способы получения ИК волоконных сборок на основе галогенидсеребряных и модифицированных световодов.
Существует большая потребность в эффективных волоконных сборках, предназначенных для передачи излучения в диапазоне 2 - 50 мкм и востребованных для применения в промышленной и медицинской термографии, ИК микроскопии и спектроскопии, в качестве канала доставки лазерного излучения, что является весьма актуальной задачей.
Первые работы по волоконным сборкам на основе двуслойных световодов, получаемых методом экструзии из кристаллов системы АдС1 - АдВг, опубликованы в работе [4]. Сборки прозрачны без окон поглощения в спектральном диапазоне от 2 до 18 мкм, нетоксичны, негигроскопичны, обладают прекрасными механическими свойствами - гибкие и пластичные, но их геометрические параметры хуже, чем для полых и халькогенидных волоконных сборок. Это связано с технологией изготовления сборок методом многостадийной экструзии двуслойных световодов, что приводит к формированию неровной границы раздела «световод-матрица» (матрица образуется за счет оболочек двуслойных световодов). Это, в свою очередь, вызывает ухудшение функциональных характеристик сборок.
В связи с разработкой новых технологий изготовления ИК волоконных сборок на основе галогенидсеребряных, в том числе модифицированных световодов, расчет, моделирование, изготовление и комплексное изучение функциональных свойств (изучение поляризации света, формирование и обработка оптических изображений, детектирование излучения) является актуальной научно-технической задачей, соответствующей паспорту специальности 01.04.05 - Оптика.
Степень разработанности темы исследования. Работа выполнялась согласно: программе развития Уральского федерального университета им. Б.Н. Ельцина на 2010 - 2020 гг. п.п. 2.2.3 - создание и развитие инновационно¬внедренческих центров; Единому государственному заказу по темам: «Создание и изучение свойств новых органических и неорганических материалов на основе монокристаллических, гетероциклических и макроциклических соединений» (№ гос. регистрации Н687.42Б.037/14, Н687.42Б.005/17); Всероссийской программе
поддержки коммерчески ориентированных научно-технических проектов молодых ученых У.М.Н.И.К.: 2011 - 2013 гг., проекты № 14151, № 17179 «Моделирование, синтез, изготовление новых кристаллов и ИК-световодов на основе твердых растворов AgBr - (КРС-5)»; Международной программе мобильности «Erasmus +» 2018 г. (Лимерикский университет, Ирландия).
Профессор д.т.н. Л.В. Жукова стояла у истоков создания поликристаллической компонентной базы для оптики и фотоники среднего ИК диапазона (2-50 мкм), в то время, как на развитие технологии поликристаллических световодов большое влияние оказала научная школа академиков Е.М. Дианова и Г.Т. Петровского. Разработка регулярных волоконных сборок на основе галогенидсеребряных световодов (система AgCl - AgBr), помимо научного коллектива инновационно-внедренческого центра «Центр инфракрасных волоконных технологий» (ИВЦ «ЦИВТ») при Уральском Федеральном Университете, проводится двумя научными группами - Тель-Авивского университета под руководством профессора А. Кацира (Израиль) [4] и коллективом компании Art-Photonics под руководством В.Г. Артюшенко (Германия) [6].
Цель работы. Разработка научных основ технологии изготовления волоконно-оптических сборок высокого разрешения на основе галогенидсеребряных, в том числе модифицированных световодов, работающих в среднем инфракрасном диапазоне и исследование их функциональных свойств.
Для достижения цели необходимо решить следующие задачи:
1. Провести численное моделирование волоконных сборок для работы в среднем ИК диапазоне спектра с целью выявления и достижения высокого пространственного разрешения и низких перекрестных помех.
2. Разработать технологии изготовления миниатюризированных регулярных ИК волоконных сборок двух типов: с сетчатой укладкой массива световодов в единую матрицу и с гексагональной укладкой механически собранных однослойных световодов минимального диаметра; смоделировать и изготовить ИК волоконные сборки двумя способами.
3. Исследовать функциональные свойства ИК волоконных сборок: диапазон пропускания, оптические потери, включая затухание по длине единичного волокна и потери на изгиб, пространственное разрешение, перекрестные помехи, модовое распределение на длине волны СО2 лазера (10,6 мкм) в дальнем поле, поляризационные свойства, влияние нагрева волоконных сборок на искажение передаваемого сигнала.
4. Экспериментально доказать применимость и востребованность многофункциональных волоконных сборок для использования в промышленной и медицинской ИК-термографии.
Научная новизна. В диссертационной работе впервые решены задачи:
1. Применяя программные пакеты SMTP и COMSOL Multiphysics, реализующие модернизированные методы моментов и конечных элементов, соответственно, проведено численное моделирование структуры, состава и режимов работы в диапазонах длин волн 8 - 14 мкм, 9,2 - 9,4 мкм и 10,6 мкм волоконных сборок на основе световодов, получаемых методом экструзии из кристаллов твердых растворов систем AgCl - AgBr, AgBr - TlI и AgBr - (КРС-5). Установлена взаимосвязь количества единичных волокон в сборке с величиной перекрестных помех.
2. Смоделированы и изготовлены волоконные сборки с гексагональной укладкой механически собранных световодов с рекордно малым диаметром - 110 мкм состава AgClo,25Bro,75 и длиной 3 м для работы в спектральном диапазоне 2 - 20 мкм. Заявка на изобретение № 2019104278 от 15.02.2019.
3. Смоделированы и изготовлены новые волоконные сборки сетчатой структуры для работы на длине волны 10,6 мкм, состоящие из 49 единичных волокон состава AgCl0,5Br0,5, помещенных в единую матрицу состава AgCl0,75Br0,25 диаметром 1120 мкм.
4. На основании моделирования получен новый класс регулярных ИК волоконных сборок гексагональной структуры при механической сборке однослойных световодов на основе систем AgBr - TlI и AgBr - (КРС-5), что позволило расширить диапазон пропускания до 25 мкм и создать волоконные сборки, устойчивые к фото- и радиационному излучению. Заявка на изобретение № 2019104333 от 15.02.2019.
5. Исследованы функциональные свойства ИК волоконных сборок: диапазон оптической прозрачности составляет от 2,0 до 20,0 - 25,0 мкм, в зависимости от состава, оптические потери по длине (X = 10,6 мкм) равны 0,4 дБ/м для сборок, полученных механической укладкой, и 5,0 дБ/м для сборок с единой матрицей, перекрестные помехи составляют 5% для сборок с механической укладкой, пространственное разрешение сборок соответствует размеру единичного световода (110 мкм). Обнаружено, что волокна в сборке проявляют поляризационные свойства.
Теоретическая и практическая значимость работы.
1. Теоретически рассчитаны, с помощью специализированных компьютерных программ по моделированию, оптимальные структуры регулярных волоконных сборок, работающих на длинах волн 9,2 - 9,4 мкм, 10,6 мкм и 8 - 14 мкм; достоверность расчетов подтверждена экспериментально.
2. Теоретически найден частный случай зависимости перекрестных помех от количества единичных волокон в сборке с гексагональной укладкой и общей матрицей, для работы в диапазоне длин волн 9,2 - 9,4 мкм;
3. Разработан стенд для измерения оптических потерь, в том числе на изгиб и распределения дальнего поля излучения СО2 лазера (10,6 мкм) прошедшего сборку, а также стенд для измерения перекрестных помех.
4. Впервые изучены поляризационные свойства галогенидсеребряных световодов и волоконных сборок. Установлена линейная зависимость детектируемой температуры от нагрева дистального конца волоконной сборки, исключаемая с помощью соответствующего программно-аппаратного обеспечения.
5. Разработан полный технологический цикл изготовления волоконных сборок, включающий синтез высокочистой однофазной шихты гидрохимическим методом (термозонной кристаллизации-синтеза), выращивание монокристаллов (патент РФ №. 2495459), получение заготовок и преформ, экструзия световодов (положительное решение по заявке на патент РФ № 2018112863) и готовых волоконных сборок.
6. Для получения световодов рекордно малого диаметра (100 - 110 мкм) (Рисунок 8) разработана и изготовлена специальная оснастка.
7. Разработано два новых способа изготовления регулярных ИК волоконных
сборок сетчатой и гексагональной структуры. Сборки сетчатой структуры получают комбинированным способом, включающим горячее прессование
монокристаллических пластин, укладку их в штабель, формирование сложной преформы и экструзию волоконных сборок (Рисунок 6). Химические составы волокон и матрицы подобраны в соответствии с проведенным моделированием. Способ позволяет достичь четкой границы раздела волокна и матрицы. Второй способ включает гексагональную укладку механически собранных однослойных световодов, отвечающих смоделированным составам систем AgCl - AgBr, AgBr - TlI и AgBr - (КРС-5) (Рисунок 8).
8. Доказана пригодность разрабатываемых многофункциональных волоконных сборок для использования в промышленной и медицинской термографии - произведена апробация новых волоконных сборок в системах данного назначения. Оформлены две заявки на изобретение «способы получения ИК волоконных сборок на основе галогенидсеребряных и модифицированных световодов.



