ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ РАБОТЫ
СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ
СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ
Актуальность темы исследования
Аморфные сплавы композиций алюминий — переходной металл (ПМ) — редкоземельный металл (R) являются одними из самых изучаемых среди сплавов на основе алюминия, склонных к аморфизации, благодаря их высоким механическим и коррозионным свойствам [1, 2]. В аморфном состоянии сплавы Al-nM-R имеют прочность на разрыв до 10 ГПа [3], а твердость по Виккерсу составляет около 380 HV, что в два раза больше, чем у кристаллических сплавов. Наряду с этим, модуль Юнга для них выше или сравним с чистым алюминием [4, 5]. Они обладают высокой коррозионной стойкостью и начинают рассматриваться в качестве перспективных защитных покрытий в промышленности.
Если в качестве ПМ используется никель, то в аморфном состоянии композиции Al-Ni-R демонстрируют отличные механические свойства, а при использовании кобальта аморфные сплавы Al-Co-R проявляют высокую коррозионную стойкость. Мы предположили, что при одновременном использовании никеля и кобальта можно получить сплавы с высокими механическими и коррозионными свойствами. Однако основной проблемой, возникающей при практическом применении этих сплавов, является их относительно низкая стеклообразующая способность (glass forming ability - GFA) и ограниченный интервал существования аморфного состояния.
Для разрешения данной проблемы возможно два основных пути решения, заключающихся в изучении жидкого и аморфного состояний сплавов.
С одной стороны, известно, что многокомпонентные сплавы являются, как правило, микронеоднородными системами при невысоких перегревах над ликвидусом [6]. Следовательно, для получения аморфных сплавов, обладающих хорошими служебными свойствами, необходима специальная термовременная обработка расплавов, температуры и режимы которой могут быть подобраны из измерений теплофизических свойств в жидком состоянии.
С другой стороны, изучение структуры и свойств сплавов в аморфном и нанокристаллическом состояниях позволяет получать информацию о структурообразовании, механизме кристаллизации, особенностях выделяющихся фаз в процессе расстеклования и причинах появления высоких коррозионных и механических свойств.
Таким образом, экспериментальное исследование сплавов систем Al-Ni-Co-R в кристаллическом, жидком и аморфном состояниях является актуальным не только с фундаментальной, но и прикладной точки зрения.
Степень разработанности темы исследования
Получение и исследование аморфных и нано-кристаллических сплавов Al-ПМ- R идет как в научных центрах России (УдмФИЦ УрО РАН, ИФТТ РАН), так и за рубежом (в лабораториях Японии, Китая, Германии, США) [1, 2, 7, 8]. На сегодняшний день изучена кинетика кристаллизации аморфных сплавов Al-Ni-R и Al- Co-R (Al > 80 ат. %), особенности их структуры в нанокристаллическом состоянии, служебные свойства (механические и коррозионные характеристики) [7]. При этом, подготовке расплавов и выбору термовременных режимов перед закалкой посвящено совсем небольшое число исследований [6].
Одними из наиболее информативных свойств сплавов в жидком состоянии являются плотность и электросопротивление. При этом плотность определяется преимущественно атомной структурой сплавов, а электрическое сопротивление - их электронной структурой. Комплексное экспериментальное изучение этих теплофизических свойств для систем А1-№-Со-Я в широком температурном интервале ранее не проводились. В большинстве работ приводится лишь аддитивная оценка плотности аморфизующихся сплавов А1-ПМ-Я [1, 2].
Резюмируя вышесказанное, подчеркнем, что проведение исследований, охватывающих кристаллическое, жидкое и аморфное состояния стеклообразующих сплавов А1-№-Со-Я, способно закрыть большой пробел в их изучении.
Цель работы и задачи исследования
Цель работы: экспериментальное исследование теплофизических свойств (плотности и электросопротивления) сплавов А1-№-Со-Я (N1 = 4, 6 ат. %, Со = 4, 2 ат. %, Я (N4, 8ш, Об, ТЬ, УЬ) = 6 ат. %), склонных к аморфизации, в широком интервале температур, а также исследование их строения, особенностей кристаллизации в аморфном и нанокристаллическом состояниях и стеклообразующей способности.
Для достижения цели, решались следующие задачи:
1. Провести модернизацию экспериментальных установок для измерения плотности методом проникающего гамма-излучения и электросопротивления бесконтактным методом во вращающемся магнитном поле.
2. Выплавить заготовки сплавов АЬбМз-хСохЯб (Я = N4, 8ш, Об, ТЬ, УЬ; х = 2, 4) и исследовать температурные зависимости их плотности и электросопротивления в широком температурном интервале, в том числе в жидком состоянии (300 К - 1550 К).
3. Получить сплавы ЛОбЖ-хСлМЯ (Я = N4, 8ш, Об, ТЬ, УЬ; х = 2, 4) в аморфном состоянии в виде лент методом спиннингования из расплава.
4. Изучить процессы кристаллизации аморфных сплавов методами ДСК, ДТА и измерения электросопротивления четырехзондовым методом.
5. Исследовать строение полученных сплавов в аморфном и нанокристаллическом состояниях методами дифракции рентгеновских лучей и просвечивающей электронной микроскопии (ПЭМ) для интерпретации выделяющихся фаз в процессе кристаллизации.
6. Провести анализ термической стабильности и стеклообразующей способности сплавов АЬбМз-хСохЯб (Я = N6, 8ш, Об, ТЬ, УЬ; х = 2, 4).
Научная новизна работы
1. Впервые проведены экспериментальные исследования плотности и электросопротивления сплавов АЬбМв-хСохЯб (Я = N6, 8ш, Об, ТЬ, УЬ; х = 2, 4) в широком температурном интервале (300 К - 1550 К), включая области кристаллического и жидкого состояний. Обнаружено, что сплавы характеризуются широкой двухфазной областью (около 300 К) и сложным поведением свойств внутри неё, а при температуре ликвидус зафиксировано скачкообразное повышение плотности и понижение сопротивления.
2. Установлено, что выше температуры ликвидус сплавы характеризуются гистерезисом плотности, что свидетельствует о необходимости учета термовременной обработки этих расплавов перед быстрой закалкой для получения качественных аморфных сплавов.
3. Впервые получены быстрозакаленные сплавы (в виде аморфных лент) составов Л18бК18-хСохКб (Я = N6, 8ш, Об, ТЬ, УЬ; х = 2, 4), проведен их рентгеноструктурный анализ и исследования с помощью просвечивающей электронной микроскопии, изучена кинетика кристаллизации методом ДСК, ДТА и измерено электросопротивление.
4. Установлено, что процесс кристаллизации аморфных сплавов Л18б№8-хСохКб носит многоступенчатый характер, при этом различные комбинации переходных и редкоземельных металлов приводят к появлению различных фаз - двойных и тройных интерметаллидов.
Теоретическая и практическая значимость работы
• Полученные экспериментальные результаты измерения плотности и электрического сопротивления в широком температурном интервале для сплавов ЛОЖ-ХоЗЯ (Я = N6, 8ш, Об, ТЬ, УЬ; х = 2, 4) могут быть использованы в качестве справочных данных.
• Зафиксированная последовательность выделяющихся фаз при кристаллизации аморфных сплавов ЛЯбЖ-хСохЯб (Я = N6, 8ш, Об, ТЬ, УЬ; х = 2, 4) может быть использована при разработке новых составов функциональных материалов, обладающих высокими механическими и коррозионными свойствами.
• Обнаружены новые интерметаллические соединения, выделяющиеся на разных стадиях кристаллизации в аморфных сплавах Л1-№-Со-Я.
• Установлены композиции сплавов ЛЪб^-хСохЯб (Я = N6, 8ш, Об, ТЬ, УЬ;
х = 2, 4), обладающие высокой термической стабильностью, что позволяет рассматривать их как перспективные функциональные материалы в различных отраслях промышленности.
• Рассчитаны критерии стеклообразующей способности и энергии активации различных стадий кристаллизации сплавов Л1-№-Со-Я.
Методология и методы диссертационного исследования
Для изучения теплофизических свойств сплавов Л1-№-Со-Я в широком температурном интервале в жидком состоянии использованы: абсолютный вариант метода проникающего гамма-излучения (температурный интервал: от комнатной температуры до 1550 К, измерения в атмосфере высокочистого гелия или в вакууме 10-2 Па), погрешность не превышает 1%; бесконтактный метод измерения электросопротивления во вращающемся магнитом поле (температурный интервал: от комнатной температуры до 1550 К, измерения в атмосфере высокочистого гелия или в вакууме 10-2 Па), погрешность метода на уровне ± 3%.
Сплавы в аморфном состоянии получены методом спиннингования на вращающийся водоохлаждаемый медный диск. Ширина полученных лент составила 3-4 мм, толщина 39-45 мкм.
Изучение аморфного и нанокристаллического состояний сплавов Al-Ni-Co-R выполнено с помощью стандартного лабораторного оборудования. Исследование дифракции рентгеновских лучей проведено на дифрактометре Bruker D8 Advance (Cu Ka), изучение кинетики кристаллизации выполнено с использованием метода ДСК- анализа на установке Perkin Elmer DSC-7. Электрическое сопротивление аморфных лент изучалось четырех-зондовым методом на переменном токе на автоматизированной установке. Высокотемпературные исследования кинетики кристаллизации проводились с использованием метода ДТА-анализа на установке Perkin Elmer DTA-7 в потоке аргона (20 мл/мин). Структура аморфных сплавов и их стадий кристаллизации изучена на просвечивающем электронном микроскопе высокого разрешения FEI Titan Themis 300.
Положения, выносимые на защиту
1. Измерения плотности и электросопротивления сплавов Al86Ni8-xCoxR6 (R = Nd, Sm, Gd, Tb, Yb; x = 2, 4) в кристаллическом и жидком состояниях показывают, что для сплавов характерна широкая область двухфазного состояния (TL- TS) в которой температурные зависимости свойств имеют нелинейный вид.
2. При проведении денситометрических исследований сплавов Al-Ni-Co-R зафиксирован гистерезис плотности (несовпадение политерм нагрева и охлаждения) при температурах ниже T ~ 1300 K, что свидетельствует о необратимых изменениях, происходящих в расплавах этих систем при перегревах в жидком состоянии.
3. Для исследованных композиций обнаружено резкое возрастание плотности и понижение электросопротивления при температуре ликвидус (TL), нетипичное для большинства сплавов на основе алюминия. Выше температуры ликвидус политермы плотности и сопротивления ведут себя сложным образом, что свидетельствует о том, что исследованные составы остаются микрогетерогенными даже при значительных перегревах.
4. Результаты исследования процессов кристаллизации аморфных сплавов Al86Ni8-xCoxR(5 (R = Nd, Sm, Gd, Tb, Yb; x = 2, 4) показывают, что сплавы, содержащие 4 ат. % кобальта обладают более высокой термической стабильностью и стеклообразующей способностью, по сравнению со сплавами, содержащими 2 ат. % кобальта. Самую высокую термическую стабильность демонстрируют аморфные сплавы с неодимом и гадолинием, что позволяет рассматривать эти композиции в качестве перспективных при разработке новых функциональных материалов.
Степень достоверности результатов работы определяется использованием современных апробированных методов исследований свойств и структуры сплавов в кристаллическом, жидком и аморфном состояниях; подробным анализом данных и корректной оценкой погрешностей измерений; воспроизводимостью полученных результатов и обнаруженных эффектов.
Апробация работы
Основные результаты диссертационного исследования были доложены и обсуждались на Международных и Всероссийских конференциях: «XIV Российская конференция Строение и свойства металлических и шлаковых расплавов (МиШР - XIV)» (Екатеринбург, Россия, 2015 г.); «High Temperature Materials Chemistry - XVI (HTMC - XVI)» (Екатеринбург, Россия, 2018 г.); «XV Российская конференция (с международным участием) по теплофизическим свойствам веществ (РКТС - 15)» (Москва, Россия, 2018 г.); «XXII Международная конференция по химической термодинамике в России (RCCT - XXII)» (Санкт-Петербург, Россия, 2019 г.); «International conference on Liquid and Amorphous Metals - 17 (LAM - XVII)» (Лион, Франция, 2019 г.); «VII Международная молодежная научная конференция Физика. Технологии. Инновации ФТИ-2020» (Екатеринбург, Россия, 2020 г.); «XXI Всероссийская школа - семинар по проблемам физики конденсированного состояния вещества (СПФКС-21)» (Екатеринбург, Россия, 2021 г.); «10th International conference Technical Thermodynamics: Thermophysical Properties and Energy Systems (THERMAM- 2021)» (Росток, Германия, 2021 г.); «Международная конференция Melts» (Екатеринбург, Россия, 2021 г.).
На конференции RCCT-XXII работа автора была удостоена премии в номинации «Лучшее исследование среди молодых ученых».
Публикации и личный вклад автора
Представленные в диссертационном исследовании результаты опубликованы в 22 научных трудах, в том числе в 8 статьях, опубликованных в рецензируемых научных изданиях, входящих в международные базы Web of Science и Scopus, а также в 14 тезисах в сборниках конференций.
Постановка цели, задач исследования и обсуждение результатов выполнены совместно с научным руководителем, профессором В.Е. Сидоровым. Модернизация экспериментальных установок для измерения плотности и электрического сопротивления, подготовка образцов, а также сами измерения свойств сплавов Al-Ni- Co-R в кристаллическом и жидком состояниях были проведены лично автором. Исследования структуры, ДСК, ДТА и электросопротивления аморфных образцов проводились совместно с коллегами из Института физики Словацкой академии наук Dr.Sc. П. Швецом старшим, PhD П. Швецом и RNDr. Д. Яничковичем в рамках научно-учебных стажировок автора в 2017 и 2019 годах (г. Братислава, Словакия). Тексты публикаций в рецензируемых журналах, а также доклады на Международных и Всероссийских конференциях были подготовлены непосредственно автором, с обсуждением с научным руководителем и соавторами. Работа выполнена в Уральском государственном педагогическом университете в период очной аспирантуры при поддержке Российского фонда фундаментальных исследований (гранты №20-32-8001 мол_эв_а; №20-32-90015 Аспиранты).
Структура и объем диссертации
Диссертация состоит из введения, 4 глав, заключения, содержащего основные выводы работы, рекомендации и перспективы дальнейшей разработки темы, и списка цитируемой литературы. Она изложена на 160 страницах, содержит 6 таблиц, 77 рисунков и 21 формулу. Список литературы включает 110 наименований.
Полученные экспериментальные данные об абсолютных значениях плотности и электросопротивления сплавов Л1-№-Со-Я (Я = N4, 8ш, Од, ТЬ, УЬ) с различным соотношением переходных металлов в кристаллическом и жидком состояниях, а также о кинетике кристаллизации и выделяющихся фазах, особенностях перехода из аморфного состояния в кристаллическое могут быть использованы при разработке перспективных защитных антикоррозионных покрытий и других функциональных материалов на основе систем Л1-№-Со-К
Среди результатов работы можно выделить следующие:
1. Модернизированы экспериментальные установки для измерения плотности и электрического сопротивления сплавов. Проведенные работы позволили существенно повысить автономность процессов измерений и эргономичность экспериментальных установок.
2. Впервые экспериментально исследованы температурные зависимости плотности и электрического сопротивления сплавов систем Л18б№бСо2Кб и Л18бМ4Со4К<5 (Я = N4, 8ш, Од, ТЬ, УЬ) в кристаллическом и жидком состояниях. Установлено, что сплавы имеют широкую область двухфазного состояния.
3. Впервые показано наличие аномалии в виде скачкообразного повышения плотности и понижения электросопротивления сплавов ЛЬ^ССо^ и Л^МдСодЯз (Я = Ш, 8ш, Од, ТЬ, УЬ) при температуре ликвидус, нехарактерное для сплавов на основе алюминия. Установлено, что при переходе из двухфазного состояния в жидкое сплавы представляют собой сильно неравновесные системы.
4. Обнаружено ветвление температурных зависимостей плотности (гистерезис) ниже температуры Т ~ 1300 К. Показано, что перегрев сплавов выше этой температуры приводит к существенным изменениям структуры, фиксируемым в экспериментах по измерению плотности, что может быть объяснено распадом крупномасштабных неоднородностей.
5. Установлено, что при измерении электрического сопротивления отсутствуют аномалии в исследованном интервале температур, а все зафиксированные скачкообразные изменения и гистерезис свойства обусловлены вкладом изменений плотности сплавов.
6. Исследованы процессы кристаллизации аморфных сплавов Als^Ni^CozR^ и AkNAoJG (R = Nd, Sm, Gd, Tb, Yb). Показано, что сплавы кристаллизуются в несколько стадий, сопровождаемых выделением стабильных и метастабильных интерметаллидов различной стехиометрии.
7. Впервые показано, что аморфные сплавы с большим содержанием кобальта - AI86N14C04R6 (R = Nd, Sm, Gd, Tb, Yb) представляют собой системы, обладающие более высокой термической стабильностью и стеклообразующей способностью по сравнению с составами Al86Ni6Co2Re.
8. Изучены температурные зависимости относительного электрического сопротивления аморфных сплавов Al86Ni6Co2Re и A186Ni4Co4R6 (R = Nd, Sm, Gd, Tb, Yb). Обнаружено, что в аморфном состоянии электросопротивление практически не зависит от температуры, а распад аморфной фазы на кристаллические соединения сопровождается ступенчатым уменьшением сопротивления вплоть до полного завершения процесса кристаллизации. Все изменения сопротивления соответствуют по температуре тепловым реакциям, зафиксированным в термических анализах, что свидетельствует об отсутствии фазовых переходов второго рода (изменениях свойства, не сопровождаемых тепловыми эффектами).
1. Suryanarayana C. Bulk Metallic Glasses / C. Suryanarayana, A. Inoue. // CRC Press. - 2017. - 565 P.
2. Inoue A. Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in Aluminum-based system / A. Inoue, H. Kimura. // J. of Light Met. - 2001. - V.1. - P. 31-41.
3. Abrosimova G.E. Nanostructure and microhardness of Al86Ni11Yb3 nanocrystalline alloy / G.E. Abrosimova, A.S. Aronin, Yu.Y. Kirjanov, T.F. Gloriant, A.L. Greer. // Acta Met. - 1999. - V.12. - P. 617-620.
4. Gogebakan M. Thermal stability and mechanical properties of Al-based amorphous alloys / M. Gogebakan, O. Uzun. // J. of Mat. Proc. Tech. -2004. -V. 153-154. -P. 829-832.
5. Mu J. Synthesis and Properties of Al-Ni-La Bulk Metallic Glass / J. Mu, H. Fu, Z. Zhu, A. Wang, H. Li, Z. Hu, H. Zhang. // Adv. Eng. Mater. - 2009. - V.11. - P.530-532.
6. Бродова И.Г. Исходные расплавы как основа формирования структуры и свойств алюминиевых сплавов / И.Г. Бродова, П.С. Попель, Н.М. Барбин, Н.А. Ватолин. - Екатеринбург: УрО РАН, 2005. - 369 с.
7. Jin Y. Ultrahigh thermal stability and hardness of nano-mixed fcc-Al and amorphous phases for multicomponent Al-based alloys / Y. Jin, A. Inoue, F.L. Kong, S.L. Zhu, F. Al-Marzouki, A.L. Greer. // J. of Alloy. and Comp. -2020. -V. 832. -154997.
8. Abrosimova G. Amorphous Phase Decomposition in Al-Ni-RE System Alloys / G. Abrosimova, A. Aronin, A. Budchenko. // Mat.Lett. -2015. -V.139. -P. 194-196.
СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ
Статьи в рецензируемых научных изданиях, определенных ВАК РФ и Аттестационным советом УрФУ:
1. Русанов Б.А. Г амма-плотномер для исследования высокотемпературных металлических расплавов / Б.А. Русанов, Е.С. Багласова, П.С. Попель, В.Е. Сидоров,
A. А. Сабирзянов // Теплофизика высоких температур. - 2018. - Т. 56. Вып.3. - С. 455-460; 0,31 п.л./0,15 п.л.
Rusanov B.A. Gamma-Densitometer for Studies of High-Temperature Metal Melts /
B. A. Rusanov, E.S. Baglasova, P.S. Popel, V.E. Sidorov, А.А. Sabirzyanov // High Temperature. - 2018. - 56(3). - P. 439-443; 0,31 п.л./0,15 п.л. (Scopus, Web of Science);
2. Rusanov B. Electric properties and crystallization behavior of Al-TM-REM amorphous alloys / B. Rusanov, V. Sidorov, P. Svec, P. Svec Sr., D. Janickovic, A. Moroz, L. Son, O. Ushakova // Journal of Alloys and Compounds. - 2019. - 787. - P. 448-451; 0,375 п.л. / 0,2 п.л. (Scopus, Web of Science);
3. Русанов Б.А. Роль переходных металлов в кристаллизации аморфных сплавов Al-Ni-Co-Yb / Б.А. Русанов, В.Е. Сидоров, П. Швец ст., П. Швец, Д. Яничкович // Журнал технической физики. - 2019. - Т.89, вып.10. - C.1571-1574; 0,375 п.л./0,2 п.л.
Rusanov B.A. The Role of Transition Metals in Crystallization of Amorphous Al-Ni-Co-Yb Alloys / B.A. Rusanov, V.E. Sidorov, P. Svec Sr., P. Svec, D. Janickovic // Technical Physics. - 2019. - 64(10). - P. 1488-1491; 0,375 п.л. / 0,2 п.л. (Scopus, Web of Science);
4. Русанов Б.А. Особенности кристаллизации и электросопротивление аморфных сплавов Al-Ni-Co-Nd(Sm) / Б.А. Русанов, В.Е. Сидоров, П. Швец, П. Швец ст., Д. Яничкович, С.А. Петрова // Неорганические материалы. - 2020. - Т.56, №1. -
C. 16-21; 0,75 п.л./0,4 п.л.
Rusanov B.A. Crystallization Behavior and Resistivity of Al-Ni-Co-Nd (Sm) Amorphous Alloys / B.A. Rusanov, V.E. Sidorov, P. Svec, P. Svec Sr., D. Janickovic, S.A. Petrova // Inorganic Materials. - 2020. - 56(1). - P. 14-19; 0,75 п.л. / 0,4 п.л. (Scopus, Web of Science);
5. Русанов Б.А. Влияние редкоземельных металлов на термическую стабильность и стеклообразующую способность аморфных сплавов Al-Ni-Co-R / Б.А. Русанов, В.Е. Сидоров, П. Швец ст., П. Швец, Д. Яничкович // Журнал неорганической химии. - 2020. - Т.65, №5. - C.613-61; 0,5 п.л./0,25 п.л.
Rusanov B.A. Effects of Rare-Earth Metals on the Thermal Stability and Glass-Forming Ability of Al-Ni-Co-R Amorphous Alloys / B.A. Rusanov, V.E. Sidorov, P. Svec Sr., P. Svec, D. Janickovic // Russian Journal of Inorganic Chemistry. - 2020. - 65(5). - P. 663-667; 0,5 п.л. / 0,25 п.л. (Scopus, Web of Science);
6. Svec P. Crystallization behavior of two Al-Ni-Co-Gd amorphous alloys with selected Ni/Co ratios / P. Svec, B. Rusanov, A. Moroz, S. Petrova, D. Janickovic, V. Sidorov, P. Svec Sr. // Journal of Alloys and Compounds. - 2021. - 876. -160109; 1 п.л. / 0,4 п.л. (Scopus, Web of Science);
7. Rusanov B. Density of Al-Ni-Co-R (R = Nd, Gd, Yb) alloys in solid and liquid states / B. Rusanov, V. Sidorov, P. Svec Sr., D. Janickovic // Physica B: Condensed Matter.
- 2021. - 619. - 413216; 0,375 п.л. / 0,2 п.л. (Scopus);
8. Русанов Б.А. Плотность и электросопротивление сплавов Al-Ni-Co-Sm(Tb) / Б.А. Русанов, В.Е. Сидоров, А.И. Мороз, P. Svec Sr., D. Janickovic // Письма в журнал технической физики. - 2021. - 47 (15). - C. 39-41; 0,31 п.л./0,15 п.л.
Rusanov B.A. Density and electrical resistivity of Al-Ni-Co-Sm(Tb) alloys / B.A. Rusanov, V.E. Sidorov, A.I. Moroz, P. Svec Sr., D. Janickovic // Technical physics letters.
- 2021. - 47(8). - P. 777-779; 0,31 п.л. / 0,15 п.л. (Scopus, Web of Sciecne).
Публикации в других научных изданиях:
9. Русанов Б.А. Модернизированная лаборатория исследования свойств металлических расплавов / Б.А. Русанов, Е.С. Багласова, Д.А. Ягодин, В.Е. Сидоров, Л.Д. Сон, П.С. Попель // Труды XIV Российской конференции «Строение и свойства металлических и шлаковых расплавов» (МиШР-XIV), г. Екатеринбург. - 2015. - C.184-185; 0,1 п.л. / 0,02 п.л.
10. Rusanov B. Electric properties and crystallization behavior of Al-TM-REM amorphous alloys / B. Rusanov, A. Moroz, V. Sidorov, P. Svec, P. Svec Sr., D. Janickovic, E. Kramarev // Book of abstracts of 16th IUPAC High Temperature Material Chemistry Conference (HTMC-XVI), Ekaterinburg. - 2018. - P.121; 0,1 п.л. / 0,02 п.л.
11. Русанов Б.А. Стеклообразующая способность и особенности кристаллизации аморфных сплавов Al-Ni-Co-Nd (Sm) / Б.А. Русанов, В.Е. Сидоров, А.И. Мороз, П. Швец, Д. Яничкович // Тезисы докладов XV Российской конференции (с международным участием) по теплофизическим свойствам веществ (РКТС-15), г. Москва. - 2018. - C.78; 0,1 п.л. / 0,02 п.л.
12. Сидоров В.Е. Особенности кристаллизации аморфных сплавов на основе алюминия и кобальта / В.Е. Сидоров, Л.Д. Сон, П.С. Попель, Б.А. Русанов // Тезисы VIII Международной конференции «Кристаллизация: компьютерные модели, эксперимент, технологии» (КРИС-2019), г. Ижевск. - 2019. -C.12-13; 0,1 п.л. / 0,02 п.л.
13. Rusanov B.A. The influence of rare-earth elements on glass-forming ability of Al-Ni-Co-REM amorphous alloys / B.A. Rusanov, V.E. Sidorov, P. Svec Sr., P. Svec, D. Janickovic, A.I. Moroz // Book of abstracts of XXII International Conference on Chemical Thermodynamics in Russia (RCCT-2019), г. Санкт-Петербург. - 2019. - P.187; 0,1 п.л. / 0,02 п.л.
14. Rusanov B. Density and electrical resistivity of Al-Ni-Co-REM alloys in liquid state / B. Rusanov, V. Sidorov, A. Moroz, N. Tselishchev, P. Popel, P. Svec Sr., P. Svec, D. Janickovic // Book of abstracts of 17th International Conference on Liquid and Amorphous Metals (LAM-17), Lyon, France. - 2019. - P. 132; 0,1 п.л. / 0,02 п.л.
15. Sidorov V. Peculiarities in crystallization of Al- and Co-based amorphous alloys / V. Sidorov, B. Rusanov, P. Svec Sr., P. Svec, D. Janickovic, L. Son // Book of abstracts of 17th International Conference on Liquid and Amorphous Metals (LAM-17), Lyon, France.
- 2019. - P. 42; 0,1 п.л. / 0,02 п.л.
16. Мороз А.И. Стеклообразующая способность и теплофизические свойства аморфных сплавов на основе алюминия / А.И. Мороз, Б.А. Русанов, В.Е. Сидоров, Н.А. Целищев, П.С. Попель, Э.А. Карфидов // Тезисы докладов VII Международной молодежной научной конференции «Физика. Технологии. Инновации» (ФТИ-2020), г. Екатеринбург. - 2020. - C.260-261; 0,1 п.л. / 0,02 п.л.
17. Русанов Б.А. Плотность и электросопротивление сплавов Al-Ni-Co-РЗМ, склонных к формированию аморфного состояния / Б.А. Русанов, А.И. Мороз, В.Е. Сидоров, П. Швец, П. Швец ст., Д. Яничкович // Тезисы докладов XXI Всероссийской школы-семинара по проблемам физики конденсированного состояния вещества (СПФКС-21), г. Екатеринбург. - 2021. - C.232; 0,1 п.л. / 0,02 п.л.
18. Русанов Б.А. Кристаллизация аморфных сплавов Al-Ni-Co-R (R=Nd, Gd, Yb) / Б.А. Русанов, В.Е. Сидоров, П. Щвец, П. Швец Ст., Д. Яничкович, Э.А. Карфидов // Тезисы докладов XXI Всероссийской школы-семинара по проблемам физики конденсированного состояния вещества (СПФКС-21), г. Екатеринбург. - 2021.-C.261; 0,1 п.л. / 0,02 п.л.
19. Карфидов Э.А. Влияние состава аморфных сплавов на коррозию в водном растворе хлорида натрия / Э.А. Карфидов, Б.А. Русанов, Е.В. Никитина, В.Е. Сидоров, П. Швец, Д. Яничкович // Тезисы докладов XXI Всероссийской школы- семинара по проблемам физики конденсированного состояния вещества (СПФКС-21), г. Екатеринбург. - 2021. - C.250; 0,1 п.л. / 0,02 п.л.
20. Rusanov B. Thermophysical and corrosion properties of Al-Ni-Co-R alloys / B. Rusanov, V. Sidorov, E. Karfidov, E. Nikitina, A. Moroz, P. Svec Sr., P. Svec, D. Janickovic // Book of abstracts 10th Rostocker international conference: “Technical thermodynamics: thermophysical properties and energy systems” (THERMAM 2021), г. Росток, Германия.-2021. - P. 131; 0,1 п.л. / 0,02 п.л.
21. Rusanov B.A. Crystallization and corrosion properties of Al-Ni-Co-Nd amorphous alloys / B.A. Rusanov, E.A. Karfidov, V.E. Sidorov, E.V. Nikitina, P. Svec Sr.,
D. Janickovic // Book of Abstracts of the International Conference MELTS, September 12-18, 2021, Ekaterinburg, Russia, Ural State Pedagogical University. - Ekaterinburg. - 2021.-P. 114-115; 0,1 п.л. / 0,02 п.л.
22. Rusanov B.A. Density and electrical resistivity of Al-Ni-Co-R alloys in solid and liquid state / B.A. Rusanov, V.E. Sidorov, A.I. Moroz, P. Svec Sr., D. Janickovic // Book of Abstracts of the International Conference MELTS, September 12-18, 2021, Ekaterinburg, Russia, Ural State Pedagogical University. - Ekaterinburg. - 2021. - P. 9-10; 0,1 п.л. / 0,02 п.л.