Актуальность темы исследования. За последние несколько десятилетий ветроэнергетика в ряде стран выделилась в отдельные сегменты энергетической отрасли, успешно конкурирующие с традиционной энергетикой. В связи с этим актуальной научно-технической задачей является повышение эффективного использования энергии ветра за счет улучшения аэродинамических и электродинамических характеристик ветроэлектрических (ветроэнергетических) установок (ВЭУ).
Основной характеристикой, определяющей работоспособность ветроэнергетической установки является коэффициент мощности (Ср) - отношение фактической механической мощности, вырабатываемой ветроустановкой, к общей мощности ветрового потока, ограниченной ометаемой площадью при определенной скорости ветра.
Проведение исследований на реальных ветроэнергоустановках является чрезвычайно трудновыполнимым и дорогостоящим мероприятием. Однако, как показывает практика, проведение исследований на виртуальных компьютерных моделях значительно облегчает выполнение задач и минимизирует затраты на эксперименты.
Степень разработанности темы исследования. Исследования многих известных ученых посвящены улучшению эксплуатационных характеристик ветроэнергетических конструкций. Н.Е. Жуковский, Ю. Прандтль и А. Бетц создали теоретические основы, объясняющие основные принципы и закономерности работы ВЭУ. Вопросы повышения эффективности ВЭУ разрабатывались такими ведущими учеными, как Н.В. Красовский, Г.Х. Сабинин, Е.М. Фатеев, В.Н. Андриянов, П.П. Безруких, В.В. Елистратов, О.С. Попель, В.М. Лятхер, Е.В. Соломин и другие. Задачи совершенствования методов и алгоритмов управления инициировали Ю.В. Шишкин, Ю.Г. Шакарян, В.З. Манусов, С.Н. Удалов, А.С. Мартьянов, а также зарубежные ученые Х. Бинднер, А. Ребсдорф, В. Байберг, Р. Гофман, О. Карлсон, Дж. Хайландер, Х. Бейер. Таким образом, синтез и исследование алгоритмов управления мощностью ВЭУ являются актуальными научными проблемами, решение которых имеет научное и практическое значение.
Цель диссертации - разработка алгоритма поддержания максимального коэффициента использования энергии ветра (коэффициента мощности) Ср во всех, в том числе аварийных режимах работы (провалах напряжения) горизонтально-осевой ветроэнергетической (ветроэлектрической) установки (ГОВЭУ), а также разработка моделей контроллера преобразователя на стороне ротора (ПСР), контроллера преобразователя на стороне сети (ПСС) и виртуального контроллера (ВК) с подтверждением результатов работы и созданием виртуального MPPT-контроллера в Среде Matlab/Simulink на основе математического моделирования.
Исходя из цели исследования, сформулированы и решены следующие задачи:
1. Разработка функциональной компьютерной модели горизонтально-осевой ветроэнергетической установки (ГОВЭУ) и системы управления, состоящей из преобразователя на стороне ротора (ПСР), преобразователя на стороне сети (ПСС) и виртуального контроллера (ВК) с возможностью задания алгоритмов управления для изучения характеристик ГОВЭУ в соответствии с исследуемыми алгоритмами управления с использованием платформы Matlab/Simulink.
2. Построение математической модели симметричного замыкания роторной цепи шунтом (crowbar) в программном пакете Matlab/Simulink для ускорения процесса восстановления ГОВЭУ в исходное устойчивое состояние после воздействия глубоких провалов напряжения.
3. Разработка метода определения производительности ГОВЭУ и создание нового алгоритма поиска (Maximum Power Point Tracking, MPPT) максимально возможного значения коэффициента использования энергии ветра (коэффициента мощности) Cpветроэлектрической установкой в условиях переменной скорости ветра.
Научная новизна:
1. Разработаны и построены новые компьютерные модели преобразователя на стороне ротора (ПСР), преобразователя на стороне сети (ПСС), ветроэнергетической установки, генератора двойного питания (ГДП), схемы защиты шунтом (crowbar), PID (ПИД)-регулятора и контроллера MPPT с помощью пакета MATLAB/SIMULINK.
2. Улучшены характеристики ветроэнергетической установки MITSUBISHI MWT-92 в части повышения эффективности и максимизации выходной мощности независимо от изменения скорости ветра за счет внедрения концепции виртуального контроллера MPPT (с использованием MATLAB/SIMULINK), увеличивающего коэффициент мощности Cpна 8%.
3. Улучшен принцип защиты электрической схемы ветроэнергетической установки путем введения активной схемы защиты шунтом (crowbar), которая защищает генератор и ПСР от провалов напряжения за счет оптимизации сопротивления шунта для ускорения и плавного восстановления системы до исходного устойчивого состояния без отключения ветроэнергетической установки от сети.
4. Предложенная имитационная модель и алгоритм MPPT протестированы на модели ветроэнергетической установки NORDEX N80/2500 для верификации построенных моделей и доказательства эффективной работы модели на всех типах ГОВЭУ.
Теоретическая значимость работы:
1. Впервые имитационная модель включает отдельный модуль виртуального контроллера, настраиваемого языком верхнего уровня для гибких условий работы ветроустановки.
2. Разработан новый алгоритм устойчивого управления ветроэнергоустановкой в условиях провалов напряжения сети с учетом меняющихся характеристик ветра.
3. Предложены схема и алгоритм работы устройства защиты генератора ГОВЭУ с шунтированием обмотки ротора для безопасного вывода ветроэнергоустановки из аварийного в нормальный режим.
Практическая значимость работы:
1. Проведен комплекс виртуальных исследований функционирования ветроэлектрической установки в условиях динамических изменений характеристик электрооборудования и скорости ветра, нацеленных на выявление оптимальных параметров электрических компонентов ГОВЭУ.
2. Проведен синтез алгоритмов управления ПСР и ПСС, обеспечивающих безопасное восстановление ГОВЭУ до устойчивого состояния после глубоких провалов напряжения.
3. Доказана эффективность управления функционированием ветроэлектрической установки на основе разработанных алгоритмов в условиях переменной скорости ветра и провалов напряжения. Алгоритмы могут быть в дальнейшем использованы производителями ветроэлектрических установок. Запланировано внедрение соответствующего программного обеспечения в системы управления ветроэлектрическими установками ФГУП Республики Крым «Крымские Генерирующие Системы».
4. Результаты диссертации, материалы научных и теоретических исследований, изложенных в диссертационной работе, используются в образовательном процессе в учебной дисциплине ДВ.1.05.02 Комплексное использование ветроэлектростанций в рамках магистерской программы 13.04.02 Электроэнергетика и электротехника ФГАОУ ВО «ЮУрГУ (НИУ)».
Методология и методы исследования. При решении поставленных задач использованы методы математического моделирования в программном комплексе МАТЬАБ/81ши11пк, а также язык программирования высокого уровня С++.
Положения, выносимые на защиту:
1. Новая имитационная компьютерная модель ветроэлектрической установки, характеризующаяся наличием модуля гибкого виртуального контроллера, описанного на языке высокого уровня, и предназначенная для исследования характеристик ветроэлектрической установки в зависимости от применяемых алгоритмов управления.
2. Способ определения производительности ветроэлектрической установки и новый динамический алгоритм поиска максимального значения коэффициента использования энергии ветра (КИЭВ или коэффициента мощности Cp_max), следовательно, повышение общей эффективности и оптимального значения коэффициента крутящего момента Ctoptв условиях переменной скорости ветра в широком диапазоне.
3. Алгоритм управления отбором мощности ветроэлектрической установки, предназначенный для защиты элементов ГОВЭУ от недопустимых выбросов токов и напряжений во время провалов напряжения, и новая схема устройства защиты генератора ГОВЭУ с шунтированием обмотки ротора для быстрого и безопасного восстановления электротехнического комплекса до устойчивого состояния после глубоких провалов напряжения.
Обоснованность и степень достоверности научных положений, выводов и результатов базируется на основе использования известных положений механики, аэродинамики, электромеханики, электродинамики, теории автоматического управления и методов компьютерного моделирования. Достоверность результатов определяется корректностью применения математического аппарата, обоснованностью методов моделирования, использующих известные, многократно подтвердившие свою достоверность программы, а также детально описанными методиками симуляции, позволяющие воспроизвести проведенные исследования другими учеными. Кроме этого, достоверность подтверждается соответствием теоретических положений результатам моделирования.
Апробация работы. Основные результаты исследования были представлены и обсуждены на следующих мероприятиях:
1. Международная научно-техническая конференция "Пром- Инжиниринг"(International Conference on Industrial Engineering, ICIE), Сочи, РФ, 25-29 марта 2019 г.
2. International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019), Sochi, Russia, 25-29 March 2019.
3. Международная научно-техническая конференция "Автоматизация"(International Russian Automation Conference, RusAutoCon 2019), Sochi, Сочи, РФ, 8-14 сентября 2019 г.
4. Международная научно-техническая конференция "Электротехнические комплексы и системы"(International Ural Conference on Green Energy, UralCon 2018), 23-25 сентября 2018 г.
5. Международная мультидисциплинарная конференция по промышленному инжинирингу и современным технологиям (International multidisciplinary conference on industrial engineering and modern technologies, FarEastCon 2018), Владивосток, РФ, 3-4 October 2018.
Публикации. По теме диссертации опубликовано 13 работ в рецензируемых научных изданиях, определенных ВАК РФ и Аттестационным советом УрФУ, в том числе 9 статей в международных рецензируемых журналах, входящих в базы цитирования Scopus, Web of Science; получено 1 свидетельство о госрегистрации программы для ЭВМ.
Личный вклад автора. Автор определил направление исследования, сформулировал цель и задачи исследования, проанализировал достижения в области научных исследований. На основе проведенного анализа были выбраны методы и средства проведения исследования, разработаны математические модели, используемые в исследовании. Разработка модели системы управления и все исследования проводились непосредственно автором.
Объем и Структура диссертации. Диссертация состоит из введения, четырех глав, заключения и приложения. Общий объем диссертации составляет 205 страниц текста с 104 рисунками, 12 таблицами и 4 приложениями. Список литературы содержит 129 наименование.
В заключении диссертации приведены основные результаты и выводы, сделанные на основе моделирования, теоретических расчетов и виртуальных экспериментов:
1. Впервые в пакете MATLAB/SIMULINK построена комплексная компьютерная функциональная модель электрических компонентов ветроэнергетической (ветроэлектрической) установки на примере MITSUBISHI MWT-92 и системы управления, включающая преобразователь на стороне ротора (ПСР), преобразователь на стороне сети (ПСС), виртуальный контроллер (ВК) отслеживания максимальной точки мощности (MPPT), защитное устройство с шунтированием ротора (ЗУШР) и соответствующие контроллеры генератора двойного питания (ГДП), в том числе контроллер ротора AC-DC-AC. Результаты моделирования электрической системы подтверждают адекватность компьютерной модели с демонстрацией удовлетворительных результатов.
2. Впервые построена математическая модель симметричного замыкания роторной цепи шунтом (crowbar) в программном пакете Matlab/Simulink. Результат виртуальных экспериментов с глубокими провалами напряжения сети во время штатной работы ВЭУ демонстрирует своевременное отсечение электрической схемы ротора ВЭУ с помощью защитного устройства с шунтированием ротора ЗУШР за 0,1 сек, что позволяет защитить схему от перенапряжений с последующим восстановлением исходного состояния за -1,17 сек (3 сек до 4,17 сек).. Разработанный метод определения сопротивления шунта применим для любого типа ГОВЭУ.
3. Впервые для нештатной работы при глубоких провалах напряжения сети в условиях переменной скорости ветра разработан новый метод и алгоритм отслеживания максимальной точки мощности (MPPT) с достижением максимальной производительности. Результатом виртуальных экспериментов явилось увеличение КИЭВ Ср на 8%.
4. Тестирование алгоритма MPPT на компьютерной модели ВЭУ NORDEX N80/2500 явилось валидацией (верификацией) разработанных моделей и методов, показав аналогичный результат повышения Ср на - 8%, что говорит о возможности адаптации алгоритма к любым конструктивам ГОВЭУ.
1. Kulganatov, A. Comparison of lifting mechanisms for raising wind wheel in mobile power complex based on renewable energy sources / A. Kulganatov, A. Ibrahim, А. Miroshnichenko // Lecture Notes in Mechanical Engineering. 5th International Conference on Industrial Engineering, ICIE 2020. -P. 1475-1482 (Scopus). 0,5 п.л./0,3 п.л.
2. Аблалгбар, О. Влияние резкого снижения напряжения на асинхронную машину двойного питания в системе генерации ветроэнергетической установки / О. Аблалгбар, А. Ибрагим, А.А. Ковалев, А.А. Мирошниченко, Е.В. Соломин // Известия НТЦ Единой Энергетической Системы. 2019. - №. 1 (80) . - С. Петербург. - С. 122-131. 0,6 п.л./0,3 п.л.
3. Abdalgbar, O. J. Modeling of doubly fed induction generator for vertical axis wind turbine (Моделирование индукционного генератора двойного питания вертикально-осевой ветроэнергетической установки) / O. J. Abdalgbar, A. Ibrahim // BULLETIN of the SUSU series, Power Engineering - 2019. - Vol. 19. - №. 1. - P. 43-49. 0,4 п.л./0,3 п.л.
4. Ibrahim, A. Development of mathematical model of doubly fed induction electric machine for wind turbine with improved yaw system / A. Ibrahim, E. Solomin, D. Korobatov // Proceedings - 2019 International Conference on Industrial Engineering, Applications and Manufacturing. - ICIEAM 2019. - Sochi. - 25-29 March 2019. - Article № 8743048 (Scopus). 0,5 п.л./0,3 п.л.
5. Solomin, E. Renewable energy potential of Russian Federation / E. Solomin, A. Ibrahim, P. Yunusov // Proceedings - 2019 International Russian Automation Conference, RusAutoCon 2019. - September 8-14. - 2019. - Sochi, Russia. - 2019. - P. 469-476 (WoS). 0,5 п.л./0,2 п.л.
6. Gordievsky, E. Review of idea on development of mobile scalable power-complex based on renewables / E. Gordievsky, A. Ibrahim, А. Miroshnichenko // Proceedings - 2019 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019. - Sochi. - 25-29 March 2019. - Article № 8743028 (Scopus). 0,5 п.л./0,3 п.л.
7. Kovalyov, A.A. Pressure plate generating electricity on the base of electromagnetic induction principle / A. A. Kovalyov, E.V. Solomin, A. Ibrahim, K. V. Romanov // Proceedings - 2019 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019. - Sochi. - 25-29 March 2019. - Article № 8742981 (Scopus). 0,5 п.л./0,2 п.л.
8. Ibrahim, A. Control strategy for maximum power point tracking of doubly fed induction motor for wind turbine / A. Ibrahim, E. Solomin, A. Miroshnichenko // 2018 Proceedings - International Ural Conference on Green Energy, UralCon 2018. - Article №. 8544372. - P. 14-19 (Scopus). 0,4 п.л./0,2 п.л.
9. Miroshnichenko, A. Research of aerodynamic characteristics of railway train for utilization of related airflow energy / A. Miroshnichenko, E. Solomin, A. Ibrahim // Proceedings - 2018 International Ural Conference on Green Energy, UralCon 2018. - Article №. 8544354. - P. 7-13, 2018 (Scopus). 0,4 п.л./0,2 п.л.
10. Sirotkin, E. Mathematical Modeling of Wind Turbine Brake System / E. Sirotkin, A. Martyanov, A. Ibrahim // Proceedings - 2018 International Ural Conference on Green Energy, UralCon 2018. - 8544362. - P. 51-56 (Scopus). 0,4 п.л./0,2 п.л.
11. Solomin, E. Analysis of the cell phone influence on the human body during voice control / E. Solomin, A. Ibrahim, E. Sirotkin // Proceedings - 2018 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2018. - 8602924. - 2018. - Vladivostok, Russian Federation. - 3-4 October (Scopus). 0,5 п.л./0,2 п.л.
12. Ибрагим, А. А. Стратегия управления на основе отслеживания точки максимальной мощности асинхронного генератора двойного питания ветроэнергетической установки / А. A. Ибрагим, А.А. Мирошниченко, Е.В. Соломин, Е.М Гордиевский, А.А. Ковалев // Электротехнические системы и комплексы. - 2018.- №. 4(41). - С. 56-62. 0,4 п.л./0,2 п.л.
13. Ibrahim, A. А. Impacts of voltage dips in doubly fed induction motor for wind turbine generation systems (Влияние провалов напряжения на асинхронную электрическую машину двойного питания в системе генерации ветроэнергетической установки) / А.А. Ibrahim, E.V. Solomin // BULLETIN of the SUSU series, Power Engineering. - 2018. - Vol. 18. - №. 4. - P. 41-51. 0,7 п.л./0,4 п.л.
Свидетельства о госрегистрации программы для ЭВМ:
1. Свидетельство о государственной регистрации программы для ЭВМ №. 2020615625. Программа эмуляции гибридного ветро-водородного
энергокомплекса / Алаззави О.Д., Ибрагим А.А., Соломин Е.В., Мирошниченко А.А., Гордиевский Е.М., Кулганатов А.З., Станчаускас В.И.. Заявка №. 2020614599 от 21.05.2020 г.; дата гос. регистрации в Реестре программ для ЭВМ 27.05.2020 г