РАЗДЕЛЕНИЕ И КОНЦЕНТРИРОВАНИЕ ИОНОВ МЕТАЛЛОВ НА СУЛЬФОЭТИЛИРОВАННЫХ АМИНОПОЛИМЕРАХ
|
ВВЕДЕНИЕ 4
ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ 10
1.1 Классификация сорбентов. Материалы на основе аминополимеров 10
1.2 Влияние кислотности среды на сорбцию ионов металлов комплексообразующими
сорбентами 14
1.3 Сорбционное равновесие: изотермы сорбции 20
1.4 Кинетика сорбции ионов металлов комплексообразующими сорбентами 28
1.5 Динамическое концентрирование ионов металлов на комплексообразующих сорбентах . 33
1.6 Верификация обработки математическими моделями 37
1.7 Постановка задачи исследования 41
ГЛАВА 2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 43
2.1 Синтез и идентификация сульфоэтилированных реагентов и аминополимеров 43
2.1.1 Сульфоэтилированные хитозаны со степенями модифицирования 0.3, 0.5, 0.7, 1.0 ... 43
2.1.2 Сульфоэтилированные полиэтиленимины со степенями модифицирования 0.34,
0.58, 0.74 43
2.1.3 Производные таурина 45
2.2 Методики приготовления растворов 45
2.3 Используемая аппаратура 45
2.4 Методика атомно-эмиссионного определения ионов металлов 46
2.5 Методика атомно-абсорбционного определения ионов металлов 46
2.6 Методика проведения сорбционных экспериментов в статических условиях 47
2.7 Методика определения СОЕ сорбентов по гидроксид-ионам 48
2.8 Методика определения ДОЕ сорбентов по гидроксид-ионам 49
2.9 Методика исследования степени набухания сорбентов 49
2.10 Методика проведения сорбционных экспериментов в динамических условиях 49
2.11 Методика потенциометрических измерений 50
2.11.1 Определение констант диссоциации органических реагентов и констант
устойчивости их комплексных соединений с ионами металлов 50
2.11.2 Определение констант диссоциации сульфоэтилированных аминополимеров,
констант устойчивости их комплексов с ионами металлов 51
ГЛАВА 3 ПРОТОЛИТИЧЕСКИЕ И КОМПЛЕКСООБРАЗУЮЩИЕ СВОЙСТВА СУЛЬФОЭТИЛИРОВАННЫХ РЕАГЕНТОВ И АМИНОПОЛИМЕРОВ 53
3.1 Протолитические и комплексообразующие свойства производных таурина 53
3.2 Кислотно-основные и комплексообразующие свойства несшитых сульфоэтилированных полиэтилениминов 57
ГЛАВА 4 СОРБЦИОННЫЕ СВОЙСТВА СУЛЬФОЭТИЛИРОВАННЫХ
АМИНОПОЛИМЕРОВ ПО ОТНОШЕНИЮ К ИОНАМ ПЕРЕХОДНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ 61
4.1 Идентификация сшитых сульфоэтилированных полиэтилениминов и их кислотно -
основные свойства 61
4.2 Влияние кислотности среды на сорбцию ионов переходных и щелочноземельных
металлов сульфоэтилированными полиэтилениминами 64
4.3 Кинетика сорбции ионов переходных и щелочноземельных металлов
сульфоэтилированными полиэтилениминами 68
4.4 Влияние концентрации иона-комплексообразователя на сорбцию индивидуальных ионов
переходных металлов сульфоэтилированными аминополимерами 73
4.5 Влияние концентрации иона-комплексообразователя на сорбцию ионов металлов СЭХ 1.0
при их совместном присутствии в растворе 79
ГЛАВА 5 СОРБЦИЯ ИОНОВ БЛАГОРОДНЫХ МЕТАЛЛОВ СУЛЬФОЭТИЛИРОВАННЫМИ
АМИНОПОЛИМЕРАМИ 85
5.1 Влияние кислотности среды и степени модифицирования на селективность сорбции платины (IV), палладия (II), золота (III) сульфоэтилированными аминополимерами 85
5.1.1 Сорбция платины (IV), палладия (II), золота (III) сульфоэтилированными сорбентами на основе хитозана 85
5.1.2 Сорбция платины (IV), палладия (II), золота (III) сульфоэтилированными сорбентами на основе полиэтиленимина 95
5.2 Кинетика сорбции платины (IV), палладия (II), золота (III) сульфоэтилированными аминополимерами 103
5.3 Динамическое концентрирование платины (IV), палладия (II), золота (III)
сульфоэтилированными аминополимерами 112
5.4 Регенерационные свойства сульфоэтилированных аминополимеров 125
5.5 Физико-химическое обоснование возможности сорбционно-спектроскопическогоопределения палладия (II) и золота (III) с использованием сульфоэтилированных аминополимеров 130
ЗАКЛЮЧЕНИЕ 140
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 144
СПИСОК ЛИТЕРАТУРЫ 147
ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ 10
1.1 Классификация сорбентов. Материалы на основе аминополимеров 10
1.2 Влияние кислотности среды на сорбцию ионов металлов комплексообразующими
сорбентами 14
1.3 Сорбционное равновесие: изотермы сорбции 20
1.4 Кинетика сорбции ионов металлов комплексообразующими сорбентами 28
1.5 Динамическое концентрирование ионов металлов на комплексообразующих сорбентах . 33
1.6 Верификация обработки математическими моделями 37
1.7 Постановка задачи исследования 41
ГЛАВА 2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 43
2.1 Синтез и идентификация сульфоэтилированных реагентов и аминополимеров 43
2.1.1 Сульфоэтилированные хитозаны со степенями модифицирования 0.3, 0.5, 0.7, 1.0 ... 43
2.1.2 Сульфоэтилированные полиэтиленимины со степенями модифицирования 0.34,
0.58, 0.74 43
2.1.3 Производные таурина 45
2.2 Методики приготовления растворов 45
2.3 Используемая аппаратура 45
2.4 Методика атомно-эмиссионного определения ионов металлов 46
2.5 Методика атомно-абсорбционного определения ионов металлов 46
2.6 Методика проведения сорбционных экспериментов в статических условиях 47
2.7 Методика определения СОЕ сорбентов по гидроксид-ионам 48
2.8 Методика определения ДОЕ сорбентов по гидроксид-ионам 49
2.9 Методика исследования степени набухания сорбентов 49
2.10 Методика проведения сорбционных экспериментов в динамических условиях 49
2.11 Методика потенциометрических измерений 50
2.11.1 Определение констант диссоциации органических реагентов и констант
устойчивости их комплексных соединений с ионами металлов 50
2.11.2 Определение констант диссоциации сульфоэтилированных аминополимеров,
констант устойчивости их комплексов с ионами металлов 51
ГЛАВА 3 ПРОТОЛИТИЧЕСКИЕ И КОМПЛЕКСООБРАЗУЮЩИЕ СВОЙСТВА СУЛЬФОЭТИЛИРОВАННЫХ РЕАГЕНТОВ И АМИНОПОЛИМЕРОВ 53
3.1 Протолитические и комплексообразующие свойства производных таурина 53
3.2 Кислотно-основные и комплексообразующие свойства несшитых сульфоэтилированных полиэтилениминов 57
ГЛАВА 4 СОРБЦИОННЫЕ СВОЙСТВА СУЛЬФОЭТИЛИРОВАННЫХ
АМИНОПОЛИМЕРОВ ПО ОТНОШЕНИЮ К ИОНАМ ПЕРЕХОДНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ 61
4.1 Идентификация сшитых сульфоэтилированных полиэтилениминов и их кислотно -
основные свойства 61
4.2 Влияние кислотности среды на сорбцию ионов переходных и щелочноземельных
металлов сульфоэтилированными полиэтилениминами 64
4.3 Кинетика сорбции ионов переходных и щелочноземельных металлов
сульфоэтилированными полиэтилениминами 68
4.4 Влияние концентрации иона-комплексообразователя на сорбцию индивидуальных ионов
переходных металлов сульфоэтилированными аминополимерами 73
4.5 Влияние концентрации иона-комплексообразователя на сорбцию ионов металлов СЭХ 1.0
при их совместном присутствии в растворе 79
ГЛАВА 5 СОРБЦИЯ ИОНОВ БЛАГОРОДНЫХ МЕТАЛЛОВ СУЛЬФОЭТИЛИРОВАННЫМИ
АМИНОПОЛИМЕРАМИ 85
5.1 Влияние кислотности среды и степени модифицирования на селективность сорбции платины (IV), палладия (II), золота (III) сульфоэтилированными аминополимерами 85
5.1.1 Сорбция платины (IV), палладия (II), золота (III) сульфоэтилированными сорбентами на основе хитозана 85
5.1.2 Сорбция платины (IV), палладия (II), золота (III) сульфоэтилированными сорбентами на основе полиэтиленимина 95
5.2 Кинетика сорбции платины (IV), палладия (II), золота (III) сульфоэтилированными аминополимерами 103
5.3 Динамическое концентрирование платины (IV), палладия (II), золота (III)
сульфоэтилированными аминополимерами 112
5.4 Регенерационные свойства сульфоэтилированных аминополимеров 125
5.5 Физико-химическое обоснование возможности сорбционно-спектроскопическогоопределения палладия (II) и золота (III) с использованием сульфоэтилированных аминополимеров 130
ЗАКЛЮЧЕНИЕ 140
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 144
СПИСОК ЛИТЕРАТУРЫ 147
Актуальность темы исследования
Аминополимеры являются веществами, которые можно модифицировать путем введения различных функциональных групп. При этом получаются сорбенты, способные к извлечению целевых компонентов как в процессе ионного обмена на поверхности полученного материала, так и за счет комплексообразования. Это позволит использовать тонкие различия для близких по физико-химическим свойствам аналитов, таких как ионы благородных металлов, методы разделения которых до настоящего времени недостаточно проработаны.
Так, например, хитозан зарекомендовал себя как удобная, доступная и экологичная матрица для синтеза сорбентов. Его модифицирование позволило создать большое количество селективных комплексообразующих материалов. Другой аминополимер - полиэтиленимин - широко применяется в качестве модификатора поверхности сорбентов благодаря высокому содержанию первичных и вторичных аминогрупп в своем составе. По этой же причине использование полиэтиленимина в качестве матрицы для синтеза селективных сорбентов является перспективным. Однако сорбенты, позволяющие осуществить разделение ионов благородных металлов, характеризующихся близкими физико-химическими свойствами, до сих пор крайне малочисленны.
В Институте органического синтеза УрО РАН впервые синтезированы сульфоэтилированные материалы на основе хитозана и полиэтиленимина. Предполагается, что введение сульфоэтильных групп в состав аминополимеров позволит в значительной степени дифференцировать свойства исследуемых сорбентов по отношению к ионам благородных металлов за счет уменьшения основности аминогрупп в их составе. Для формирования основ использования сульфоэтилированных аминополимеров в процессах разделения и концентрирования ионов благородных металлов необходимо исследование их физико-химических свойств.
Работа выполнялась при финансовой поддержке стипендии Губернатора Свердловской области, стипендии первого Президента России Б. Н. Ельцина; РФФИ в рамках научного проекта № 16-33-00110 мол_а; Правительства Российской Федерации (постановление № 211, контракт № 02.A03.21.0006).
Степень научной разработанности темы
Анализ литературных данных показывает, что для концентрирования ионов благородных металлов предложено довольно большое количество сорбентов различной природы. Однако, чаще всего эти материалы являются групповыми и не позволяют селективно извлекать отдельные ионы благородных металлов на фоне других. Кроме того, сорбция ионов благородных металлов во многих случаях исследуется из относительно простых по составу растворов: одно-, двух- или трехкомпонентных, что затрудняет интерпретацию селективных свойств сорбентов.
Моделирование равновесия сорбции ионов металлов различными материалами также во многих случаях не учитывает конкурентных процессов, которые могут протекать в многокомпонентных системах. Между тем результаты исследования свойств сорбентов в растворах сложного состава и их адекватная математическая обработка являются необходимыми для разработки методик селективного концентрирования ионов металлов. Сульфоэтилированные хитозаны (СЭХ) ранее были предложены для сорбции ионов серебра (I) из растворов сложного состава, но их свойства по отношению к ионам палладия (II), платины (IV) и золота (III) исследованы не были. Изучение свойств сульфоэтилированных полиэтилениминов (СЭПЭИ) ранее также не проводилось.
Цели и задачи работы
Цель исследования - выявление физико-химических закономерностей извлечения ионов благородных и сопутствующих им в различных объектах ионов металлов материалами на основе сульфоэтилированных аминополимеров - полиэтиленимина и хитозана - в зависимости от степени их модифицирования и условий проведения сорбции.
В рамках поставленной цели решались следующие задачи:
1. Определение констант диссоциации функциональных групп в составе мономерных аналогов исследуемых сорбентов (производных таурина) и несшитых сульфоэтилированных полиэтилениминов, а также констант устойчивости комплексных соединений, образуемых ими с ионами металлов.
2. Определение констант диссоциации функциональных групп в составе материалов на основе сульфоэтилированных полиэтилениминов, их степени набухания, статической и динамической обменных емкостей по гидроксид-ионам.
3. Установление закономерностей сорбции ионов серебра (I) и меди (II) сорбентами на основе сульфоэтилированных полиэтиленимина и хитозана из растворов сложного состава; построение изотерм сорбции ионов металлов и проведение их анализа на соответствие известным теоретическим моделям, используемым для описания сорбции из однокомпонентных и многокомпонентных растворов.
4. Выявление закономерностей влияния степени сульфоэтилирования и природы аминополимерной матрицы на сорбцию золота (III), палладия (II), платины (IV) исследуемыми материалами из растворов различного состава.
5. Определение кинетических параметров сорбции золота (III), палладия (II), платины (IV) сульфоэтилированными полиэтиленимином и хитозаном из растворов различного состава; оценка вклада диффузионной и химической кинетики в механизм сорбционного процесса.
6. Определение оптимальных условий концентрирования платины (IV), палладия (II), золота (III) сульфоэтилированными аминополимерами в динамических условиях.
7. Исследование регенерационных свойств СЭПЭИ и СЭХ, подбор элюента для количественной десорбции ионов металлов с поверхности сорбентов.
8. Физико-химическое обоснование возможности сорбционно-спектроскопического определения ионов благородных металлов на фоне сопутствующих металлов с использованием исследуемых сорбентов.
Научная новизна
1. Определены константы кислотной диссоциации и константы комплексообразования производных таурина с ионами меди (II), никеля (II), кобальта (II), цинка (II), серебра (I), кальция (II), магния (II), кадмия (II). Впервые определены константы диссоциации и комплексообразования сульфоэтилированных полиэтилениминов с разными степенями модифицирования с ионами переходных металлов.
2. Впервые выявлены закономерности влияния степени сульфоэтилирования и природы аминополимерной матрицы на сорбцию меди (II), серебра (I) и палладия (II), золота (III) из растворов сложного состава, определены интервалы pH, соответствующие максимальной селективности сорбции ионов металлов исследуемыми материалами. Установлено, что рост степени сульфоэтилирования сорбентов приводит к значительному возрастанию селективности сорбции палладия (II), золота (III) СЭХ и СЭПЭИ.
3. Впервые получены изотермы сорбции ионов меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), магния (II), серебра (I), кальция (II), марганца (II), свинца (II) и стронция (II) при совместном присутствии на СЭХ и СЭПЭИ, проведена их математическая обработка известными теоретическими моделями; показана необходимость использования для описания изотерм сорбции ионов металлов из многокомпонентных систем уравнений, учитывающих их взаимное влияние. С использованием различных математических моделей определены значения сорбционной емкости СЭХ и СЭПЭИ по ионам металлов, а также параметры сродства ион металла-сорбент.
4. Впервые установлены кинетические характеристики процесса сорбции палладия (II) и золота (III) СЭХ и СЭПЭИ из растворов различного состава. Показано, что процесс сорбции лимитируется стадией химического взаимодействия ионов металлов с функциональными группами сорбентов.
5. Впервые получены динамические выходные кривые сорбции золота (III), платины (IV), палладия (II) СЭХ и СЭПЭИ, рассчитаны значения динамической обменной емкости сорбентов по исследуемым ионам металлов. Путем математической обработки полученных экспериментальных динамических выходных кривых сорбции ионов металлов СЭХ моделями Юна-Нельсона, Томаса и Адамса-Бохарта получены значения таких практически значимых параметров, как константы скорости, емкость сорбента и время выхода 50 % сорбата.
6. Определены оптимальные условия (кислотность среды, скорость пропускания раствора, масса сорбента, проведение предварительного набухания) на селективность сорбции золота (III), палладия (II), платины (IV) СЭПЭИ, которые легли в основу соответствующих методик их сорбционно-спектроскопического определения.
Теоретическая и практическая значимость работы
В результате комплексного исследования свойств сульфоэтилированных реагентов, аминополимеров и сорбентов установлена связь между их строением и протолитическими, комплексообразующими и селективными свойствами. Определенные количественные характеристики процесса сорбции (такие как коэффициенты селективности сорбции ионов металлов, сорбционная емкость исследуемых материалов, константы диссоциации и устойчивости комплексных соединений, константы скорости сорбции и т.д.) ионов серебра (I), меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), магния (II), палладия (II), платины (IV), золота (III) носят справочный характер и могут использоваться для разработки методик сорбционного разделения и концентрирования исследуемых ионов металлов.
Проведено физико-химическое обоснование возможности сорбционно-спектроскопического определения палладия (II) с предварительным концентрированием СЭХ 1.0 в динамических условиях. Диапазон определяемых концентраций палладия (II) составляет от 0.005 до 0.4 мг/дм3. Показано, что количественному определению палладия (II) не мешает 850-кратный избыток ионов никеля (II), кобальта (II), меди (II), цинка (II). Разработана методика сорбционно-спектроскопического определения золота (III) и палладия (II) с их предварительным разделением и отделением от платины (IV) при использовании СЭПЭИ 0.74 в статических условиях.
Методология и методы исследования
Исследование протолитических и комплексообразующих свойств производных таурина и сульфоэтилированных полиэтилениминов с разными степенями модифицирования проведено методом потенциометрического титрования. Значения обменной емкости СЭПЭИ определены методом обратного кислотно-основного потенциометрического титрования.
Сорбционные свойства материалов на основе хитозана и полиэтиленимина в статических условиях исследованы методом ограниченного объема, в динамических условиях - путем пропускания исследуемого раствора через концентрирующий патрон с сорбентом. Выявление взаимного влияния палладия (II), платины (IV), золота (III), серебра (I) при их сорбции исследуемыми материалами проводилось путем изучения извлечения ионов металлов из растворов различного состава (одно-, двух-, трех- и многокомпонентных систем).
Параметры, характеризующие равновесие сорбции ионов металлов СЭХ и СЭПЭИ, определяли путем обработки изотерм сорбции как известными теоретическими моделями Ленгмюра, Фрейндлиха, Редлиха-Петерсона и Сипса, так и модифицированными формами соответствующих уравнений, учитывающими процессы конкурентной сорбции. Моделирование кинетических кривых сорбции ионов металлов СЭХ и СЭПЭИ проводили с использованием уравнений диффузионной и химической кинетики. Определение концентраций ионов металлов в растворах до и после сорбции, а также после десорбции проводили методами атомно-абсорбционной спектроскопии с пламенной атомизацией и атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
Положения, выносимые на защиту
1. Данные о кислотно-основных и комплексообразующих свойствах производных таурина и несшитых сульфоэтилированных полиэтилениминов.
2. Данные о константах диссоциации функциональных групп в составе сорбентов на основе сульфоэтилированных полиэтилениминов, степени их набухания, статическая и динамическая обменные емкости по гидроксид-ионам.
3. Физико-химические закономерности сорбции серебра (I), меди (II), платины (IV), палладия (II), золота (III) из растворов различного состава материалами на основе СЭХ и СЭПЭИ с различными степенями модифицирования; оптимальные условия селективного концентрирования ионов металлов исследуемыми сорбентами.
4. Результаты математического описания изотерм сорбции ионов металлов материалами на основе сульфоэтилированных полиэтиленимина и хитозана с применением известных теоретических моделей, в том числе уравнений, используемых для описания конкурентной сорбции.
5. Механизм сорбции палладия (II), золота (III), платины (IV) СЭХ и СЭПЭИ; кинетические параметры сорбции ионов металлов исследуемыми сорбентами.
6. Методики сорбционно-спектроскопического определения палладия (II) и золота (III) с использованием сульфоэтилированных полиэтиленимина и хитозана.
Степень достоверности и апробация результатов
Достоверность представленных в настоящей работе результатов подтверждается применением современных методов исследования и использованием поверенного оборудования, такого как атомные спектрометры и иономеры. Рассчитанные значения констант кислотной ионизации, констант комплексообразования, сорбционных параметров характеризуются хорошей воспроизводимостью и согласуются с данными, представленными в литературных источниках. Правильность определения содержания ионов металлов подтверждена методом «введено-найдено» с использованием государственных стандартных образцов.
Основные результаты настоящей работы были представлены и обсуждены на III Всероссийской конференции «Аналитическая хроматография и капиллярный электрофорез» с международным участием (Краснодар, 2017 г.), IV Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2017» (Екатеринбург, 2017 г.), Третьем съезде аналитиков России (Москва, 2017 г.), XVIII Международной научно-практической конференции «Химия и химическая технология в XXI веке» (Томск, 2017 г.), XVII Всероссийской молодежной научной конференции с элементами научной школы «Функциональные материалы: синтез, свойства, получение» (Санкт-Петербург, 2018 г.), IX Молодежной конференции «Ломоносов 2018» (Москва, 2018 г.), XXII Международной Черняевской конференции по химии, аналитике и технологии платиновых металлов (Москва, 2019 г.).
Личный вклад автора заключался в планировании и проведении экспериментальных исследований, обработке и интерпретации полученных результатов, написании и подготовке публикаций вместе с соавторами.
Публикации
По материалам диссертации опубликовано 16 научных работ, из них 4 в журналах, входящих в международные базы цитирования Web of Science и Scopus, 3 - в журналах, рекомендованных ВАК России, 9 - в материалах и сборниках трудов всероссийских и международных конференций.
Структура и объем диссертации
Диссертационная работа состоит из введения, 5 глав, выводов и списка литературы, содержащего 265 библиографических ссылок. Текст работы изложен на 169 страницах, включает в себя 42 рисунка и 46 таблиц.
Аминополимеры являются веществами, которые можно модифицировать путем введения различных функциональных групп. При этом получаются сорбенты, способные к извлечению целевых компонентов как в процессе ионного обмена на поверхности полученного материала, так и за счет комплексообразования. Это позволит использовать тонкие различия для близких по физико-химическим свойствам аналитов, таких как ионы благородных металлов, методы разделения которых до настоящего времени недостаточно проработаны.
Так, например, хитозан зарекомендовал себя как удобная, доступная и экологичная матрица для синтеза сорбентов. Его модифицирование позволило создать большое количество селективных комплексообразующих материалов. Другой аминополимер - полиэтиленимин - широко применяется в качестве модификатора поверхности сорбентов благодаря высокому содержанию первичных и вторичных аминогрупп в своем составе. По этой же причине использование полиэтиленимина в качестве матрицы для синтеза селективных сорбентов является перспективным. Однако сорбенты, позволяющие осуществить разделение ионов благородных металлов, характеризующихся близкими физико-химическими свойствами, до сих пор крайне малочисленны.
В Институте органического синтеза УрО РАН впервые синтезированы сульфоэтилированные материалы на основе хитозана и полиэтиленимина. Предполагается, что введение сульфоэтильных групп в состав аминополимеров позволит в значительной степени дифференцировать свойства исследуемых сорбентов по отношению к ионам благородных металлов за счет уменьшения основности аминогрупп в их составе. Для формирования основ использования сульфоэтилированных аминополимеров в процессах разделения и концентрирования ионов благородных металлов необходимо исследование их физико-химических свойств.
Работа выполнялась при финансовой поддержке стипендии Губернатора Свердловской области, стипендии первого Президента России Б. Н. Ельцина; РФФИ в рамках научного проекта № 16-33-00110 мол_а; Правительства Российской Федерации (постановление № 211, контракт № 02.A03.21.0006).
Степень научной разработанности темы
Анализ литературных данных показывает, что для концентрирования ионов благородных металлов предложено довольно большое количество сорбентов различной природы. Однако, чаще всего эти материалы являются групповыми и не позволяют селективно извлекать отдельные ионы благородных металлов на фоне других. Кроме того, сорбция ионов благородных металлов во многих случаях исследуется из относительно простых по составу растворов: одно-, двух- или трехкомпонентных, что затрудняет интерпретацию селективных свойств сорбентов.
Моделирование равновесия сорбции ионов металлов различными материалами также во многих случаях не учитывает конкурентных процессов, которые могут протекать в многокомпонентных системах. Между тем результаты исследования свойств сорбентов в растворах сложного состава и их адекватная математическая обработка являются необходимыми для разработки методик селективного концентрирования ионов металлов. Сульфоэтилированные хитозаны (СЭХ) ранее были предложены для сорбции ионов серебра (I) из растворов сложного состава, но их свойства по отношению к ионам палладия (II), платины (IV) и золота (III) исследованы не были. Изучение свойств сульфоэтилированных полиэтилениминов (СЭПЭИ) ранее также не проводилось.
Цели и задачи работы
Цель исследования - выявление физико-химических закономерностей извлечения ионов благородных и сопутствующих им в различных объектах ионов металлов материалами на основе сульфоэтилированных аминополимеров - полиэтиленимина и хитозана - в зависимости от степени их модифицирования и условий проведения сорбции.
В рамках поставленной цели решались следующие задачи:
1. Определение констант диссоциации функциональных групп в составе мономерных аналогов исследуемых сорбентов (производных таурина) и несшитых сульфоэтилированных полиэтилениминов, а также констант устойчивости комплексных соединений, образуемых ими с ионами металлов.
2. Определение констант диссоциации функциональных групп в составе материалов на основе сульфоэтилированных полиэтилениминов, их степени набухания, статической и динамической обменных емкостей по гидроксид-ионам.
3. Установление закономерностей сорбции ионов серебра (I) и меди (II) сорбентами на основе сульфоэтилированных полиэтиленимина и хитозана из растворов сложного состава; построение изотерм сорбции ионов металлов и проведение их анализа на соответствие известным теоретическим моделям, используемым для описания сорбции из однокомпонентных и многокомпонентных растворов.
4. Выявление закономерностей влияния степени сульфоэтилирования и природы аминополимерной матрицы на сорбцию золота (III), палладия (II), платины (IV) исследуемыми материалами из растворов различного состава.
5. Определение кинетических параметров сорбции золота (III), палладия (II), платины (IV) сульфоэтилированными полиэтиленимином и хитозаном из растворов различного состава; оценка вклада диффузионной и химической кинетики в механизм сорбционного процесса.
6. Определение оптимальных условий концентрирования платины (IV), палладия (II), золота (III) сульфоэтилированными аминополимерами в динамических условиях.
7. Исследование регенерационных свойств СЭПЭИ и СЭХ, подбор элюента для количественной десорбции ионов металлов с поверхности сорбентов.
8. Физико-химическое обоснование возможности сорбционно-спектроскопического определения ионов благородных металлов на фоне сопутствующих металлов с использованием исследуемых сорбентов.
Научная новизна
1. Определены константы кислотной диссоциации и константы комплексообразования производных таурина с ионами меди (II), никеля (II), кобальта (II), цинка (II), серебра (I), кальция (II), магния (II), кадмия (II). Впервые определены константы диссоциации и комплексообразования сульфоэтилированных полиэтилениминов с разными степенями модифицирования с ионами переходных металлов.
2. Впервые выявлены закономерности влияния степени сульфоэтилирования и природы аминополимерной матрицы на сорбцию меди (II), серебра (I) и палладия (II), золота (III) из растворов сложного состава, определены интервалы pH, соответствующие максимальной селективности сорбции ионов металлов исследуемыми материалами. Установлено, что рост степени сульфоэтилирования сорбентов приводит к значительному возрастанию селективности сорбции палладия (II), золота (III) СЭХ и СЭПЭИ.
3. Впервые получены изотермы сорбции ионов меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), магния (II), серебра (I), кальция (II), марганца (II), свинца (II) и стронция (II) при совместном присутствии на СЭХ и СЭПЭИ, проведена их математическая обработка известными теоретическими моделями; показана необходимость использования для описания изотерм сорбции ионов металлов из многокомпонентных систем уравнений, учитывающих их взаимное влияние. С использованием различных математических моделей определены значения сорбционной емкости СЭХ и СЭПЭИ по ионам металлов, а также параметры сродства ион металла-сорбент.
4. Впервые установлены кинетические характеристики процесса сорбции палладия (II) и золота (III) СЭХ и СЭПЭИ из растворов различного состава. Показано, что процесс сорбции лимитируется стадией химического взаимодействия ионов металлов с функциональными группами сорбентов.
5. Впервые получены динамические выходные кривые сорбции золота (III), платины (IV), палладия (II) СЭХ и СЭПЭИ, рассчитаны значения динамической обменной емкости сорбентов по исследуемым ионам металлов. Путем математической обработки полученных экспериментальных динамических выходных кривых сорбции ионов металлов СЭХ моделями Юна-Нельсона, Томаса и Адамса-Бохарта получены значения таких практически значимых параметров, как константы скорости, емкость сорбента и время выхода 50 % сорбата.
6. Определены оптимальные условия (кислотность среды, скорость пропускания раствора, масса сорбента, проведение предварительного набухания) на селективность сорбции золота (III), палладия (II), платины (IV) СЭПЭИ, которые легли в основу соответствующих методик их сорбционно-спектроскопического определения.
Теоретическая и практическая значимость работы
В результате комплексного исследования свойств сульфоэтилированных реагентов, аминополимеров и сорбентов установлена связь между их строением и протолитическими, комплексообразующими и селективными свойствами. Определенные количественные характеристики процесса сорбции (такие как коэффициенты селективности сорбции ионов металлов, сорбционная емкость исследуемых материалов, константы диссоциации и устойчивости комплексных соединений, константы скорости сорбции и т.д.) ионов серебра (I), меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), магния (II), палладия (II), платины (IV), золота (III) носят справочный характер и могут использоваться для разработки методик сорбционного разделения и концентрирования исследуемых ионов металлов.
Проведено физико-химическое обоснование возможности сорбционно-спектроскопического определения палладия (II) с предварительным концентрированием СЭХ 1.0 в динамических условиях. Диапазон определяемых концентраций палладия (II) составляет от 0.005 до 0.4 мг/дм3. Показано, что количественному определению палладия (II) не мешает 850-кратный избыток ионов никеля (II), кобальта (II), меди (II), цинка (II). Разработана методика сорбционно-спектроскопического определения золота (III) и палладия (II) с их предварительным разделением и отделением от платины (IV) при использовании СЭПЭИ 0.74 в статических условиях.
Методология и методы исследования
Исследование протолитических и комплексообразующих свойств производных таурина и сульфоэтилированных полиэтилениминов с разными степенями модифицирования проведено методом потенциометрического титрования. Значения обменной емкости СЭПЭИ определены методом обратного кислотно-основного потенциометрического титрования.
Сорбционные свойства материалов на основе хитозана и полиэтиленимина в статических условиях исследованы методом ограниченного объема, в динамических условиях - путем пропускания исследуемого раствора через концентрирующий патрон с сорбентом. Выявление взаимного влияния палладия (II), платины (IV), золота (III), серебра (I) при их сорбции исследуемыми материалами проводилось путем изучения извлечения ионов металлов из растворов различного состава (одно-, двух-, трех- и многокомпонентных систем).
Параметры, характеризующие равновесие сорбции ионов металлов СЭХ и СЭПЭИ, определяли путем обработки изотерм сорбции как известными теоретическими моделями Ленгмюра, Фрейндлиха, Редлиха-Петерсона и Сипса, так и модифицированными формами соответствующих уравнений, учитывающими процессы конкурентной сорбции. Моделирование кинетических кривых сорбции ионов металлов СЭХ и СЭПЭИ проводили с использованием уравнений диффузионной и химической кинетики. Определение концентраций ионов металлов в растворах до и после сорбции, а также после десорбции проводили методами атомно-абсорбционной спектроскопии с пламенной атомизацией и атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
Положения, выносимые на защиту
1. Данные о кислотно-основных и комплексообразующих свойствах производных таурина и несшитых сульфоэтилированных полиэтилениминов.
2. Данные о константах диссоциации функциональных групп в составе сорбентов на основе сульфоэтилированных полиэтилениминов, степени их набухания, статическая и динамическая обменные емкости по гидроксид-ионам.
3. Физико-химические закономерности сорбции серебра (I), меди (II), платины (IV), палладия (II), золота (III) из растворов различного состава материалами на основе СЭХ и СЭПЭИ с различными степенями модифицирования; оптимальные условия селективного концентрирования ионов металлов исследуемыми сорбентами.
4. Результаты математического описания изотерм сорбции ионов металлов материалами на основе сульфоэтилированных полиэтиленимина и хитозана с применением известных теоретических моделей, в том числе уравнений, используемых для описания конкурентной сорбции.
5. Механизм сорбции палладия (II), золота (III), платины (IV) СЭХ и СЭПЭИ; кинетические параметры сорбции ионов металлов исследуемыми сорбентами.
6. Методики сорбционно-спектроскопического определения палладия (II) и золота (III) с использованием сульфоэтилированных полиэтиленимина и хитозана.
Степень достоверности и апробация результатов
Достоверность представленных в настоящей работе результатов подтверждается применением современных методов исследования и использованием поверенного оборудования, такого как атомные спектрометры и иономеры. Рассчитанные значения констант кислотной ионизации, констант комплексообразования, сорбционных параметров характеризуются хорошей воспроизводимостью и согласуются с данными, представленными в литературных источниках. Правильность определения содержания ионов металлов подтверждена методом «введено-найдено» с использованием государственных стандартных образцов.
Основные результаты настоящей работы были представлены и обсуждены на III Всероссийской конференции «Аналитическая хроматография и капиллярный электрофорез» с международным участием (Краснодар, 2017 г.), IV Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2017» (Екатеринбург, 2017 г.), Третьем съезде аналитиков России (Москва, 2017 г.), XVIII Международной научно-практической конференции «Химия и химическая технология в XXI веке» (Томск, 2017 г.), XVII Всероссийской молодежной научной конференции с элементами научной школы «Функциональные материалы: синтез, свойства, получение» (Санкт-Петербург, 2018 г.), IX Молодежной конференции «Ломоносов 2018» (Москва, 2018 г.), XXII Международной Черняевской конференции по химии, аналитике и технологии платиновых металлов (Москва, 2019 г.).
Личный вклад автора заключался в планировании и проведении экспериментальных исследований, обработке и интерпретации полученных результатов, написании и подготовке публикаций вместе с соавторами.
Публикации
По материалам диссертации опубликовано 16 научных работ, из них 4 в журналах, входящих в международные базы цитирования Web of Science и Scopus, 3 - в журналах, рекомендованных ВАК России, 9 - в материалах и сборниках трудов всероссийских и международных конференций.
Структура и объем диссертации
Диссертационная работа состоит из введения, 5 глав, выводов и списка литературы, содержащего 265 библиографических ссылок. Текст работы изложен на 169 страницах, включает в себя 42 рисунка и 46 таблиц.
1. Исследованы кислотно-основные и комплексообразующие свойства производных таурина и несшитого сульфоэтилированного полиэтиленимина. Установлено, что введение в состав исследуемых реагентов гидроксиалкильных и/или сульфоэтильных групп (увеличение степени сульфоэтилирования в случае полимеров) приводит к снижению основности аминогрупп в их составе и, как следствие, ослаблению устойчивости комплексных соединений с ионами переходных и щелочноземельных металлов. Показано, что наиболее устойчивые комплексы сульфоэтильные реагенты и аминополимеры образуют с ионами серебра (I) и меди (II), что определяет селективные свойства сорбентов на их основе, а следующие по устойчивости образующихся комплексных соединений ионы никеля (II) и кобальта (II) могут обладать наибольшим мешающим влиянием.
2. Впервые охарактеризованы свойства сорбентов на основе сульфоэтилированного полиэтиленимина, сшитого диглицидиловым эфиром диэтиленгликоля. Определены значения статической и динамической обменных емкостей исследуемых материалов по гидроксид-ионам, степени набухания и показателей констант диссоциации функциональных аминогрупп. Установлено, что рост степени сульфоэтилирования незначительно влияет на основность сорбентов в отличие от несшитых модифицированных аминополимеров.
3. Выявлены закономерности влияния степени модифицирования СЭПЭИ на селективность сорбции серебра (I), меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), кальция (II), стронция (II), бария (II) из аммиачно-ацетатных буферных растворов. Показано, что из многокомпонентных растворов СЭПЭИ наиболее селективно извлекает ионы меди (II) и серебра (I). Установлено, что с ростом степени сульфоэтилирования полиэтиленимина сорбция ионов щелочноземельных металлов подавляется, а ионов никеля (II) и кобальта (II) - в значительной степени снижается, причем повышение степени модифицирования смещает оптимальный интервал сорбции ионов металлов в менее кислую среду. Такое изменение свидетельствует об уменьшении устойчивости комплексных соединений указанных ионов металлов с СЭПЭИ, поскольку для их образования требуется наличие депротонированных аминогрупп. Высокие коэффициенты корреляции моделей химической кинетики, полученные при математической обработке интегральных кинетических кривым сорбции ионов переходных металлов СЭПЭИ также указывают на комплексообразование. Равновесие в системе «раствор солей ионов металлов-сорбент» устанавливается за 60-120 минут, при этом скорость- лимитирующей стадией является протекание химической реакции.
Получены изотермы сорбции ионов меди (II), никеля (II), кобальта (II), серебра (I) и цинка (II) СЭХ. Путем обработки полученных зависимостей с использованием моделей Ленгмюра, Фрейндлиха, Редлиха-Петерсона и Сипса определены параметры сродства и значения максимальной сорбционной емкости сорбентов по ионам исследуемых металлов. Установлено, что сорбент на основе СЭПЭИ характеризуется большими значениями емкости по ионам металлов чем СЭХ, что согласуется с большим содержанием аминогрупп в его составе.
Для СЭХ 1.0 впервые получены изотермы сорбции ионов металлов из двух-, пяти- и двенадцати-компонентных систем. Эти зависимости обработаны соответствующими моделями, учитывающими процессы конкурентной сорбции. Установлено, что СЭХ 1.0 обладает наибольшим сродством по отношению к серебру (I). Показано, что наилучшим образом полученные зависимости описываются уравнением частично-конкурентной сорбции Ленгмюра, что свидетельствует об образовании разнометалльных комплексных соединений в фазе сорбента. Выявлено значительное влияние ионов металлов друг на друга при их сорбции СЭХ 1.0 из растворов различного состава.
4. Впервые исследована селективность сорбции золота (III), палладия (II), платины (IV) из растворов различного состава в зависимости от кислотности среды СЭПЭИ и СЭХ. Ряд селективности для СЭХ 1.0 при pH 3.0-5.0 выглядит следующим образом Аи (III) > Рй (II) > Р1 (IV) > Си (II) > N1 (II), Со (II), /п (II), Сй (II), для СЭПЭИ при pH 0.5 - Рй (II) > Аи (III) > Р1 (IV) > Си (II), N1 (II), Со (II), /п (II), Сй (II), при pH 3.5-4.5 - Аи (III) > Рй (II) > Р1 (IV) > Си (II), N1 (II), Со (II), /п (II), Сй (II). Установлено, что увеличение степени модифицирования сорбентов приводит к подавлению сорбции платины (IV) в присутствии палладия (II) и золота (III) сорбентами на обеих матрицах. Сорбция ионов неблагородных металлов СЭПЭИ и СЭХ в условиях эксперимента незначительна. Показано, что сорбция хлоридных комплексных соединений палладия (II) и золота (III) в статических условиях преимущественно протекает за счет комплексообразования с функциональными группами сорбентов, а платины (IV) - за счет ионного обмена. СЭХ 1.0 позволяет селективно извлекать золото (III) на фоне других ионов благородных металлов (КАи/Ме 500 - >103 при pH 3.5-4.5), в отсутствии золота (III) - отделять палладий (II) от платины (IV). В отличие от СЭХ 1.0 СЭПЭИ 0.74 характеризуется более широким интервалом pH, соответствующим количественному извлечению золота (III). Это свидетельствует о большей устойчивости комплексных соединений, образуемых материалами на основе полиэтиленимина по сравнению с хитозаном. Варьирование кислотности среды позволяет проводить селективное разделение золота (III), палладия (II) и платины (IV) с использованием СЭПЭИ 0.74 в статических условиях.
5. Впервые получены интегральные кинетические кривые сорбции ионов благородных металлов СЭХ и СЭПЭИ из растворов сложного состава. Установлено, что равновесие сорбции палладия (II) и золота (III) достигается в течение 120 минут, платины (IV) - в течение 60 минут. Поскольку уравнения химической кинетики наилучшим образом описывают экспериментальные данные, показано значительное влияние химической реакции на скорость сорбционного процесса. Рост степени сульфоэтилирования аминополимеров приводит к немонотонному изменению скорости сорбции ионов благородных металлов, однако в целом соблюдаются те же закономерности извлечения, что и при изучении влияния кислотности среды на сорбцию исследуемых ионов металлов.
6. Впервые установлено, что преобладающим механизмом сорбции золота (III), палладия (II), платины (IV) СЭПЭИ в динамических условиях является электростатическое взаимодействие протонированных аминогрупп сорбента с отрицательно заряженными хлоридными комплексами ионов благородных металлов, что определяет меньшую селективность сорбции отдельных ионов металлов по сравнению со статическим режимом. Выявлены закономерности влияния различных факторов (кислотности среды, скорости пропускания раствора, массы сорбента, наличия предварительного набухания) на селективность сорбции золота (III), палладия (II), платины (IV) СЭПЭИ. Установлено, что наибольшей селективности сорбции палладия (II) СЭПЭИ 0.74 из трехкомпонентной системы соответствует pH 0.5 без предварительной стадии набухания сорбента, однако высокая степень набухания материала препятствует использованию данного способа концентрирования.
В случае СЭХ при переходе от статического режима сорбции к динамическому сохраняется высокая селективность извлечения палладия (II) в присутствии платины (IV) и ряда сопутствующих ионов металлов. Проведена математическая обработка полученных экспериментальных динамических выходных кривых сорбции ионов металлов СЭХ моделями Юна-Нельсона, Томаса и Адамса-Бохарта. Получены значения таких практически значимых параметров, как константы скорости, емкость сорбента и время выхода 50 % сорбата.
7. Подобран способ регенерации поверхности исследуемых сорбентов как в статических,
так и в динамических условиях, оптимальный элюент - 1 % раствор тиомочевины,
подкисленный 3.5 моль/дм3 раствором хлороводородной кислоты.
8. Проведено физико-химическое обоснование методики сорбционно-спектроскопического определения палладия (II) с использованием для его предварительного концентрирования в динамических условиях СЭХ 1.0 и методики сорбционно-спектроскопического определения палладия (II) и золота (III) с предварительным их разделением и отделением от платины (IV) на СЭПЭИ 0.74 в статическом режиме.
Перспективы дальнейшей разработки темы
Анализ полученных данных позволяет определить следующие основные пути развития проведенного исследования:
1. Получение изотерм сорбции ионов металлов сорбентами на основе сульфоэтилированных полиэтилениминов из растворов сложного состава. Определение физико-химических параметров сорбции ионов металлов исследуемыми сорбентами путем математической обработки полученных зависимостей моделями, учитывающими взаимное влияние (процессы конкурентной сорбции).
2. Изучение возможностей варьирования селективности сорбции ионов металлов СЭХ и СЭПЭИ путем введения в состав исследуемого раствора дополнительных комплексообразующих соединений, например, реагентов класса комплексонов.
3. Расширение перечня сорбируемых соединений за счет исследования возможностей извлечения органических веществ (например, аминокислот) СЭХ и СЭПЭИ.
4. Разработка методики селективного количественного извлечения палладия (II) СЭХ 1.0 из медно-никелевых концентратов и сульфидных руд, а также разработка и аттестация методик сорбционно-спектроскопического определения ионов золота (III) в файнштейнах и медно- никелевых сульфидных рудах с использованием установленных в настоящей работе физико-химических закономерностей концентрирования ионов металлов СЭПЭИ и СЭХ.
2. Впервые охарактеризованы свойства сорбентов на основе сульфоэтилированного полиэтиленимина, сшитого диглицидиловым эфиром диэтиленгликоля. Определены значения статической и динамической обменных емкостей исследуемых материалов по гидроксид-ионам, степени набухания и показателей констант диссоциации функциональных аминогрупп. Установлено, что рост степени сульфоэтилирования незначительно влияет на основность сорбентов в отличие от несшитых модифицированных аминополимеров.
3. Выявлены закономерности влияния степени модифицирования СЭПЭИ на селективность сорбции серебра (I), меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), кальция (II), стронция (II), бария (II) из аммиачно-ацетатных буферных растворов. Показано, что из многокомпонентных растворов СЭПЭИ наиболее селективно извлекает ионы меди (II) и серебра (I). Установлено, что с ростом степени сульфоэтилирования полиэтиленимина сорбция ионов щелочноземельных металлов подавляется, а ионов никеля (II) и кобальта (II) - в значительной степени снижается, причем повышение степени модифицирования смещает оптимальный интервал сорбции ионов металлов в менее кислую среду. Такое изменение свидетельствует об уменьшении устойчивости комплексных соединений указанных ионов металлов с СЭПЭИ, поскольку для их образования требуется наличие депротонированных аминогрупп. Высокие коэффициенты корреляции моделей химической кинетики, полученные при математической обработке интегральных кинетических кривым сорбции ионов переходных металлов СЭПЭИ также указывают на комплексообразование. Равновесие в системе «раствор солей ионов металлов-сорбент» устанавливается за 60-120 минут, при этом скорость- лимитирующей стадией является протекание химической реакции.
Получены изотермы сорбции ионов меди (II), никеля (II), кобальта (II), серебра (I) и цинка (II) СЭХ. Путем обработки полученных зависимостей с использованием моделей Ленгмюра, Фрейндлиха, Редлиха-Петерсона и Сипса определены параметры сродства и значения максимальной сорбционной емкости сорбентов по ионам исследуемых металлов. Установлено, что сорбент на основе СЭПЭИ характеризуется большими значениями емкости по ионам металлов чем СЭХ, что согласуется с большим содержанием аминогрупп в его составе.
Для СЭХ 1.0 впервые получены изотермы сорбции ионов металлов из двух-, пяти- и двенадцати-компонентных систем. Эти зависимости обработаны соответствующими моделями, учитывающими процессы конкурентной сорбции. Установлено, что СЭХ 1.0 обладает наибольшим сродством по отношению к серебру (I). Показано, что наилучшим образом полученные зависимости описываются уравнением частично-конкурентной сорбции Ленгмюра, что свидетельствует об образовании разнометалльных комплексных соединений в фазе сорбента. Выявлено значительное влияние ионов металлов друг на друга при их сорбции СЭХ 1.0 из растворов различного состава.
4. Впервые исследована селективность сорбции золота (III), палладия (II), платины (IV) из растворов различного состава в зависимости от кислотности среды СЭПЭИ и СЭХ. Ряд селективности для СЭХ 1.0 при pH 3.0-5.0 выглядит следующим образом Аи (III) > Рй (II) > Р1 (IV) > Си (II) > N1 (II), Со (II), /п (II), Сй (II), для СЭПЭИ при pH 0.5 - Рй (II) > Аи (III) > Р1 (IV) > Си (II), N1 (II), Со (II), /п (II), Сй (II), при pH 3.5-4.5 - Аи (III) > Рй (II) > Р1 (IV) > Си (II), N1 (II), Со (II), /п (II), Сй (II). Установлено, что увеличение степени модифицирования сорбентов приводит к подавлению сорбции платины (IV) в присутствии палладия (II) и золота (III) сорбентами на обеих матрицах. Сорбция ионов неблагородных металлов СЭПЭИ и СЭХ в условиях эксперимента незначительна. Показано, что сорбция хлоридных комплексных соединений палладия (II) и золота (III) в статических условиях преимущественно протекает за счет комплексообразования с функциональными группами сорбентов, а платины (IV) - за счет ионного обмена. СЭХ 1.0 позволяет селективно извлекать золото (III) на фоне других ионов благородных металлов (КАи/Ме 500 - >103 при pH 3.5-4.5), в отсутствии золота (III) - отделять палладий (II) от платины (IV). В отличие от СЭХ 1.0 СЭПЭИ 0.74 характеризуется более широким интервалом pH, соответствующим количественному извлечению золота (III). Это свидетельствует о большей устойчивости комплексных соединений, образуемых материалами на основе полиэтиленимина по сравнению с хитозаном. Варьирование кислотности среды позволяет проводить селективное разделение золота (III), палладия (II) и платины (IV) с использованием СЭПЭИ 0.74 в статических условиях.
5. Впервые получены интегральные кинетические кривые сорбции ионов благородных металлов СЭХ и СЭПЭИ из растворов сложного состава. Установлено, что равновесие сорбции палладия (II) и золота (III) достигается в течение 120 минут, платины (IV) - в течение 60 минут. Поскольку уравнения химической кинетики наилучшим образом описывают экспериментальные данные, показано значительное влияние химической реакции на скорость сорбционного процесса. Рост степени сульфоэтилирования аминополимеров приводит к немонотонному изменению скорости сорбции ионов благородных металлов, однако в целом соблюдаются те же закономерности извлечения, что и при изучении влияния кислотности среды на сорбцию исследуемых ионов металлов.
6. Впервые установлено, что преобладающим механизмом сорбции золота (III), палладия (II), платины (IV) СЭПЭИ в динамических условиях является электростатическое взаимодействие протонированных аминогрупп сорбента с отрицательно заряженными хлоридными комплексами ионов благородных металлов, что определяет меньшую селективность сорбции отдельных ионов металлов по сравнению со статическим режимом. Выявлены закономерности влияния различных факторов (кислотности среды, скорости пропускания раствора, массы сорбента, наличия предварительного набухания) на селективность сорбции золота (III), палладия (II), платины (IV) СЭПЭИ. Установлено, что наибольшей селективности сорбции палладия (II) СЭПЭИ 0.74 из трехкомпонентной системы соответствует pH 0.5 без предварительной стадии набухания сорбента, однако высокая степень набухания материала препятствует использованию данного способа концентрирования.
В случае СЭХ при переходе от статического режима сорбции к динамическому сохраняется высокая селективность извлечения палладия (II) в присутствии платины (IV) и ряда сопутствующих ионов металлов. Проведена математическая обработка полученных экспериментальных динамических выходных кривых сорбции ионов металлов СЭХ моделями Юна-Нельсона, Томаса и Адамса-Бохарта. Получены значения таких практически значимых параметров, как константы скорости, емкость сорбента и время выхода 50 % сорбата.
7. Подобран способ регенерации поверхности исследуемых сорбентов как в статических,
так и в динамических условиях, оптимальный элюент - 1 % раствор тиомочевины,
подкисленный 3.5 моль/дм3 раствором хлороводородной кислоты.
8. Проведено физико-химическое обоснование методики сорбционно-спектроскопического определения палладия (II) с использованием для его предварительного концентрирования в динамических условиях СЭХ 1.0 и методики сорбционно-спектроскопического определения палладия (II) и золота (III) с предварительным их разделением и отделением от платины (IV) на СЭПЭИ 0.74 в статическом режиме.
Перспективы дальнейшей разработки темы
Анализ полученных данных позволяет определить следующие основные пути развития проведенного исследования:
1. Получение изотерм сорбции ионов металлов сорбентами на основе сульфоэтилированных полиэтилениминов из растворов сложного состава. Определение физико-химических параметров сорбции ионов металлов исследуемыми сорбентами путем математической обработки полученных зависимостей моделями, учитывающими взаимное влияние (процессы конкурентной сорбции).
2. Изучение возможностей варьирования селективности сорбции ионов металлов СЭХ и СЭПЭИ путем введения в состав исследуемого раствора дополнительных комплексообразующих соединений, например, реагентов класса комплексонов.
3. Расширение перечня сорбируемых соединений за счет исследования возможностей извлечения органических веществ (например, аминокислот) СЭХ и СЭПЭИ.
4. Разработка методики селективного количественного извлечения палладия (II) СЭХ 1.0 из медно-никелевых концентратов и сульфидных руд, а также разработка и аттестация методик сорбционно-спектроскопического определения ионов золота (III) в файнштейнах и медно- никелевых сульфидных рудах с использованием установленных в настоящей работе физико-химических закономерностей концентрирования ионов металлов СЭПЭИ и СЭХ.
Подобные работы
- ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ СОРБЦИИ ИОНОВ БЛАГОРОДНЫХ МЕТАЛЛОВ НА СУЛЬФОЭТИЛИРОВАННЫХ ПОЛИАМИНОСТИРОЛАХ И ПОЛИАЛЛИЛАМИНАХ
Диссертации (РГБ), химия. Язык работы: Русский. Цена: 4215 р. Год сдачи: 2022 - РАЗДЕЛЕНИЕ И КОНЦЕНТРИРОВАНИЕ ИОНОВ МЕТАЛЛОВ НА СУЛЬФОЭТИЛИРОВАННЫХ АМИНОПОЛИМЕРАХ
Авторефераты (РГБ), химия. Язык работы: Русский. Цена: 250 р. Год сдачи: 2021 - ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ СОРБЦИИ ИОНОВ БЛАГОРОДНЫХ МЕТАЛЛОВ НА СУЛЬФОЭТИЛИРОВАННЫХ ПОЛИАМИНОСТИРОЛАХ И ПОЛИАЛЛИЛАМИНАХ
Авторефераты (РГБ), химия. Язык работы: Русский. Цена: 250 р. Год сдачи: 2022



