Актуальность темы. В настоящее время схема размещения генерирующих объектов на территории Российской Федерации на законодательном уровне включает в себя кроме генеральной схемы размещения объектов электроэнергетики, схем и программ развития Единой энергетической системы России (СиПР ЕЭС), также схемы и программы перспективного развития электроэнергетики субъектов Российской Федерации, что является отдельной важной локальной задачей в составе глобальной задачи перспективного планирования. При этом отсутствие утверждённой на федеральном уровне единой для всех методологии разработки программ регионального экономического развития, а также правил планирования развития топливно-энергетического комплекса, на основании которых специалистами энергетического сектора рассчитывается прогноз потребления электроэнергии и мощности, который, в свою очередь, учитывается при составлении схем и программ развития электроэнергетики, подтверждает необходимость разработки нового универсального подхода к решению данной задачи.
Современные региональные электроэнергетические системы (ЭЭС) характеризуются возрастающей долей возобновляемых источников энергии, что обусловлено существующими механизмами стимулирования их развития. В большинстве развитых стран реализуют механизмы государственной поддержки развития возобновляемых источников энергии, включающие фиксированные тарифы, определяющие цену за киловатт-час произведенной электроэнергии, ценовые надбавки, зеленые сертификаты и другие механизмы. В России наибольшее распространение получил механизм конкурсных отборов на право заключения договора поставки мощности для оптового рынка, в рамках которого собственники объектов, функционирующих на основе возобновляемых источников энергии, получают ежемесячную гарантированную плату за мощность. Распоряжением Правительства РФ определены целевые показатели установленной мощности такой генерации в общей структуре генерирующих мощностей - 5 871 МВт до 2024 года. На начало 2018 года ее установленная мощность без учета гидроэлектростанций в ЕЭС России составила - 1,59 ГВт, в мире - 941,0 ГВт, а оценка технически доступного энергетического потенциала возобновляемых источников энергии в России по разным источникам оценивается от 5 до 25 млрд. т.у.т. в год, то есть оценочно 55% от годового потребления энергии.
В ЭЭС со значительной долей возобновляемых источников энергии задача эффективного размещения генерирующих объектов имеет также ряд дополнительных особенностей, а именно связана с задачами размещения генерации и планирования режимов ее работы, которые в свою очередь определяются правилами технологического функционирования электроэнергетических систем и базируются на формировании долгосрочных и краткосрочных балансов мощности и электроэнергии. В среднем установленная мощность, к примеру, фотоэлектрических станций составляет порядка 15-20 МВт, что сопоставимо с потерями мощности в масштабах крупных ЭЭС. Однако для региональных энергосистем и отдельных энергорайонов (Оренбургская область, где доля генерации на основе возобновляемых источников энергии к 2020 году составит порядка 20% при суммарной установленной мощности в 365 МВт) такая мощность может оказывать существенное влияние на схемно-режимную ситуацию в районе размещения и потребует внимания к электросетевым ограничениям и потерям мощности в сети.
Также задача размещения генерирующих объектов в ЭЭС со значительной долей ВИЭ, имеет непосредственную связь с задачей прогнозирования генерации электрической энергии, так как отсутствие достоверных прогнозов возобновляемых источников энергии влечет за собой необходимость постоянного поддержания полноценного резерва активной мощности в энергосистеме (в объёме располагаемой мощности возобновляемых источников энергии), что фактически означает необходимость дополнительного включения тепловой генерации и её работы в неэкономичных режимах и/или резервирования пропускной способности электрических сетей, что в свою очередь создает проблему формирования избыточных мощностей не только на уровне регионов, но и на уровне потребителей. Так, на примере реализации программы договора о предоставлении мощности в России, завышенные прогнозы роста спроса на электрическую энергию и мощность при формировании плана строительства новых мощностей привели к профициту мощности и дополнительной нагрузке на потребителей.
Проблемы прогнозирования генерации электроэнергии на объектах, функционирующих с использованием различных видов возобновляемых источников энергии, связаны с проблемой стохастичного характера их генерации. Такая задача является многофакторной с большим числом плохо формализуемых и лингвистических данных, так как базируется на метеорологических и климатологических данных, укрупненный характер которых также оказывает сильное влияние на результат прогнозирования генерации электрической энергии.
Самыми распространенными станциями на основе возобновляемых источников энергии, реализуемыми на территории РФ с государственной поддержкой, являются фотоэлектрические и ветровые электростанции, а также мини-гидростанции. Несмотря на то, что темпы роста установленной мощности ветровых электростанций на территории РФ выше, отдельные крупные районы юга России формируют свою «зеленую энергетику» именно на базе фотоэлектрических станций.
Применительно к задаче эффективного размещения фотоэлектрических станций требуется учитывать энергетический потенциал территории, доступность альтернативных местных видов топлива и другие критерии, что делает данную задачу актуальной для региональных энергосистем в условиях развития возобновляемых источников энергии.
Необходимость прогнозирования генерации возобновляемых источников энергии закреплена на государственном уровне, согласно приказу от 11.02.2019 № 91 «Об утверждении требований к прогнозированию потребления и формированию балансов электрической энергии и мощности энергосистемы на календарный год и периоды в пределах года» «...Объем производства электрической энергии в прогнозном балансе электрической энергии энергосистемы должен определяться для ветровых и солнечных электростанций - на основе помесячных данных о средней многолетней величине производства электрической энергии данными электростанциями за три последних года, а при отсутствии указанных данных (в том числе для строящихся электростанций) - в соответствии с предложениями собственников по формированию сводного прогнозного баланса...». При этом в деятельности оперативно-диспетчерских центров в России задача прогнозирования генерации фотоэлектрических станций фактически не решена. В настоящее время при краткосрочном планировании электрических режимов с целью компенсации стохастического снижения выдачи мощности электростанциями на основе возобновляемых источников энергии, увеличивается объем резервов активной мощности ЭЭС на суммарную величину генерации, заявленной собственниками таких генерирующих объектов.
С целью повышения эффективности краткосрочного планирования режимов в части соблюдения системных ограничений, размещения резервов активной мощности требуется создание инструментов прогнозирования генерации фотоэлектрических станций для краткосрочного (на сутки вперед) и оперативного (внутри суточный прогноз с горизонтом упреждения до 6 часов) горизонтов планирования режимов. Такое разделение определено, как уже упоминалось выше, стохастичностью процесса генерации электрической энергии фотоэлектрическими станциями, суточным и сезонным циклами изменения солнечного излучения. Краткосрочный прогноз генерации электрической энергии фотоэлектрических станций продиктован необходимостью его формирования диспетчерскими центрами системного оператора для рынка на сутки вперед, а оперативный прогноз - для управления перетоками мощности, балансирования генерации и корректировки диспетчерских графиков фотоэлектрических станций.
Кроме того, собственники фотоэлектрических станций, также заинтересованы в развитии инструментов прогнозирования. В существующих условиях это позволит не только решать задачи выбора состава включенного генерирующего оборудования, планирования резервов мощности, но обеспечить эффективное планирование технического обслуживания и ремонтов основного генерирующего оборудования.
Вышесказанное подчеркивает актуальность исследования и необходимость гармонизации процесса внедрения фотоэлектрических станций в энергосистемы, а также выявляет ряд принципиально новых проблем и задач, требующих разработки новых подходов к их решению с точки зрения информационно-аналитических и математических принципов обработки и анализа данных.
Таким образом, задачи размещения и краткосрочного прогнозирования генерации электрической энергии фотоэлектрическими станциями - актуальные задачи для собственников генерирующих объектов и для организаций диспетчерского и технологического управления, обеспечивающих планирование электроэнергетического режима и бесперебойное электроснабжение потребителей, как с технической, так и с экономической точек зрения.
Объект исследования - региональная электроэнергетическая система с большой долей солнечных электростанций на базе фотоэлектрических преобразователей и оценка их влияния на режимы работы сети.
Предмет исследования - территориальное размещение и краткосрочное прогнозирование генерации фотоэлектрических станций в региональных электроэнергетических системах.
Цель работы - совершенствование существующих и разработка новых математических подходов к эффективному размещению объектов генерации на основе возобновляемых источников энергии и краткосрочному прогнозированию генерации фотоэлектрических станций с использованием статистических методов и методов машинного обучения.
Для достижения поставленной цели в работе поставлены и решены следующие задачи:
1) анализ существующих методов и подходов к размещению генерирующих объектов на основе возобновляемых источников энергии;
2) разработка модели эффективного размещения генерирующих объектов на основе возобновляемых источников энергии;
3) разработка моделей краткосрочного и оперативного прогнозирования генерации электрической энергии фотоэлектрическими станциями;
4) анализ влияния режимов работы фотоэлектрических станций на резервы мощности электроэнергетической системы.
Научная новизна работы состоит в следующем:
1) разработана многопараметрическая математическая модель оптимизации размещения объектов генерации в ЭЭС с увеличенной долей возобновляемых источников энергии, реализованная на картах технологического районирования;
2) обосновано и получено решение задачи эффективного размещения генерирующих объектов в региональных ЭЭС с большой долей возобновляемых источников энергии с учетом технических ограничений прилегающей сети ;
3) разработаны новые математические модели и алгоритмы краткосрочного и оперативного прогнозирования генерации электроэнергии фотоэлектрическими станциями, основанные на статистических методах, методах машинного обучения, законах распространения солнечного излучения в атмосфере и его пространственно-временных характеристиках;
4) предложена методика оценки необходимых резервов активной мощности в ЭЭС с большой долей возобновляемых источников энергии, основанная на оценке рисков возникновения небаланса активной мощности.
Практическая значимость результатов работы.
Предложены эффективные' методики и инструменты решения задач размещения и краткосрочного прогнозирования генерации электрической энергии фотоэлектрическими станциями в региональных ЭЭС на базе разработанных моделей с использованием статистических методов и методов машинного обучения.
Предложенные подходы позволяют получить максимально точные обоснованные сценарии размещения фотоэлектрических станций в региональных ЭЭС и оценить графики их генерации для решения задачи размещения резервов активной мощности.
Также практическая ценность подтверждается актом внедрения результатов диссертационной работы в деятельность одной из ведущих мировых компаний электроэнергетической области - ООО «11рософт-Системы».
Положения, выносимые на защиту:
1. Многопараметрическая модель размещения объектов генерации на основе возобновляемых источников энергии, построенная на базе метода анализа иерархий и генетического алгоритма, позволяет получить оптимальные варианты развития такой генерации в региональных электроэнергетических системах.
2. Математическая модель и алгоритм краткосрочного прогнозирования генерации электрической энергии фотоэлектрическими станциями «на сутки вперед», построенные на основе метода множественной регрессии, позволяют получить прогноз генерации с ошибкой не более 20%.
3. Математическая модель оперативного прогнозирования генерации электрической энергии фотоэлектрическими станциями повышает эффективность внутрисуточного планирования электроэнергетических режимов.
4. Методика оценки величины резервов активной мощности в ЭЭС с большой долей возобновляемых источников энергии, основанная на оценке рисков возникновения небаланса мощности, позволяет избежать необходимости формирования резервов активной мощности тепловой генерации в объеме установленной мощности ВИЭ.
Соответствие диссертации паспорту научной специальности. Диссертационная работа соответствует следующим пунктам паспорта специальности 05.14.02 - Электрические станции и электроэнергетические системы:
• п. 1 «Оптимизация структуры, параметров и схем электрических соединений электростанций»;
• п. 6 «Разработка методов математического и физического моделирования в электроэнергетике»;
• п. 13 «Разработка методов использования ЭВМ для решения задач в электроэнергетике».
Обоснованность и достоверность. Результаты диссертационной работы получены при корректном и обоснованном применении статистических методов и методов машинного обучения и подтверждаются согласованностью с результатами, полученными на основе эмпирических выводов и экспертных оценок в рамках выполнения научно-исследовательских работ.
Апробация работы. Положения диссертационной работы докладывались и обсуждались на 11 международных и Российских научных конференциях, а именно: 46th CIGRE Session, 2016 (Париж, Франция); 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, 2016 (Рига, Латвия); Электроэнергетика глазами молодежи, 2017 (Самара, Россия); II International Conference on Control in Technical Systems, 2017 (Санкт-Петербург, Россия); 8th International Conference on Energy and Environment, 2017 (Бухарест, Румыния); 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering, 2017 (Кадиз, Испания); Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2018 (Санкт-Петербург, Россия); 3rd International Conference on Advances on Clean Energy Research, 2018 (Санкт- Петербург, Россия); 3rd International Conference on Advances on Clean Energy Research, 2018 (Барселона, Испания); 17th International Ural Conference on AC Electric Drives, 2018 (Екатеринбург, Россия); IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019 (Санкт-Петербург, Россия).
Публикации. По теме диссертационной работы опубликовано 13 статей, в том числе 3 статьи в рецензируемых научных изданиях, рекомендуемых ВАК РФ, 10 публикаций в материалах конференций и в журналах, индексируемых в международных базах научного цитирования Scopus и Web of Science. В совместных работах доля автора составляет не менее 70%.
Структура и объем работы. Диссертационная работа включает в себя введение, четыре главы, заключение, список сокращений и условных обозначений, список литературы, состоящий из 176 библиографических ссылок и одно приложение. Общий объем работы составляет 212 страниц, в том числе 63 таблицы, 57 рисунков.
1. Выполнен анализ подходов для энергообеспечения территорий в рамках реализации целевых показателей развития объектов генерации на основе возобновляемых источников энергии и представлен обзор международных стандартов и нормативных документов, регламентирующих основные технические требования и системные ограничения при их подключении на параллельную работу с электроэнергетической системой.
2. Разработана многопараметрическая математическая модель оптимизации размещения объектов генерации на основе возобновляемых источников энергии, основанная на картах технологического районирования региональной электроэнергетической системы и доказана ее эффективность на примере анализа энергосистемы Свердловской области.
3. Получено и обосновано решение задач краткосрочного прогнозирования генерации электрической энергии фотоэлектрической станцией «на сутки вперед» на основе модели множественной регрессии и оперативного прогнозирования на интервале упреждения до шести часов на основе метода градиентного бустинга над деревьями решений. Выполнена реализация разработанных методик в виде программного модуля на языке Python в ПО Jupyter и апробация разработанных моделей на Оренбургской ФЭС, показавшие достаточную для практической реализации точность прогнозов.
4. Сформирована модель исходных данных и методика кластеризации ретроспективной информации по метеорологическим данным и событиям для фотоэлектрической станции, позволяющие уменьшить нормализованный модуль средней ошибки краткосрочного прогнозирования до величины 20% за счёт снижения дисперсии признаков.
5. Показана возможность получения оперативных прогнозов генерации электрической энергии фотоэлектрической станцией без применения дополнительных устройств мониторинга погодных условий с нормализованным модулем средней ошибки 15%.
6. Выявлены, систематизированы и ранжированы основные факторы и критерии, влияющие на величину ошибок при формировании краткосрочных и оперативных прогнозов генерации электрической энергии, проведен анализ информативности признаков и степень их влияния на результат прогноза. Сформированы требования к структуре и составу исходных данных.
7. Разработана универсальная методика оценки величины необходимых резервов активной мощности в ЭЭС с увеличенной долей солнечных электростанций на базе фотоэлектрических преобразователей, основанная на оценке рисков возникновения небаланса активной мощности в электроэнергетических системах.
1. Ерошенко, С.А. Разработка адекватных технических условий для технологического присоединения генерирующих объектов малой мощности к электрической сети / П.М. Ерохин, С.А. Ерошенко, А.В. Паздерин, В.О. Самойленко, А.Л. Рывлин, С.А. Стерлягова // Промышленная энергетика, 2016. - № 2. - С. 6-12.
2. Ерошенко, С.А. Технические вопросы подключения малой генерации на параллельную работу с энергосистемой / С.А. Ерошенко, А.И. Хальясмаа, С.А. Дмитриев, А.В. Паздерин, А.А. Карпенко // Журнал «Научное обозрение», 2013. - №6 - С. 49-56.
3. Ерошенко, С.А. Анализ технической реализуемости присоединения установок малой генерации на параллельную работу с сетью электросетевой компании / С.А. Ерошенко, А.И. Хальясмаа, С.А. Дмитриев // Журнал «Энергетика Татарстана», 2013 - №3(31) - С. 51-56.
Публикации в трудах конференций и изданиях, входящих в наукометрические базы данных Scopus, Web of Science и другие:
4. S.A. Eroshenko. Comparison study of wind flow velocity short-term forecasting methods based on adaptive models and neural networks / V.Z. Manusov,
S.A. Eroshenko, P.V. Matrenin, E.A. Igumnova, G. B. Nesterenko // International Journal of Advanced Science and Technology, 29 (8 Special Issue), 2020. - pp. 2108-2115.
5. Eroshenko, S.A. Solar Power Plant Generation Short-Term Forecasting
Model / S.A. Eroshenko, E.S Kochneva, P.A. Kruchkov, A.I. Khalyasmaa // MATEC Web of Conferences, 2018. - № 208 04004. DOI:
10.1051/matecconf/201820804004
6. Eroshenko, S.A. Very-short term solar power generation forecasting based on trend-additive and seasonal-multiplicative smoothing methodology / S.A. Eroshenko, A.I. Khalyasmaa, R.T. Valiev // E3S Web of Conferences, 2018. - № 51 02003. DOI: 10.1051/e3scconf/20185102003
7. Eroshenko, S.A. Weather data errors analysis in solar power stations generation forecasting / S.A. Eroshenko, A.I. Khalyasmaa // E3S Web of Conferences, 2018. - № 51 02002. DOI: 10.1051/e3sconf/20185102002
8. Eroshenko, S.A. Assessment of the learning sample size and pattern impact on the SPS generation short-term forecasting / S.A. Eroshenko, A.I. Khalyasmaa // Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering - EIConRus, 2018. - pp. 617-621. DOI: 10.1109/EIConRus.2018.8317172
9. Eroshenko, S.A. Algorithmic realization of short-term solar power plant output forecasting / D.A. Snegirev, S.A. Eroshenko, R.T. Valiev, A. I. Khalyasmaa // Proceedings of 2017 IEEE 2nd International Conference on Control in Technical Systems - CTS'2017, 2017. - pp. 228-231. DOI: 10.1109/CTSYS.2017.8109532
10. Eroshenko, S.A. The improvement of distributed generation integration
efficiency / S.A. Eroshenko, A.I. Khalyasmaa // Proceedings of 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering - CPE-POWERENG, 2017. - pp. 94-99. DOI:
10.1109/CPE.2017.7915151
11. Eroshenko, S.A. Functional assessment system of solar power plant energy production / A.I. Khalyasmaa, D.A. Snegirev, R.T. Valiev, S.A. Eroshenko // Proceedings of 8th International Conference on ENERGY and ENVIRONMENT
-CIEM, 2017. - pp. 349-353. DOI: 10.1109/CIEM.2017.8120862
12. Eroshenko, S.A. Intelligent model of decision support system of distributed generation integration / S.A. Eroshenko, A.I. Khalyasmaa // Proceedings of the IEEE International Conference on Software Engineering and Service Science
-ICSESS, 2017. - pp. 79-82. DOI: 10.1109/ICSESS.2017.8342868
13. Eroshenko, S. A. Training sample dimensions impact on artificial neural network optimal structure / V. Z. Manusov, I. S. Makarov, S. A. Dmitriev and S. A. Eroshenko // Proceedings of the 12th International Conference on Environment and Electrical Engineering, 2013. - pp. 156-159. DOI: 10.1109/EEEIC.2013.6549608