СОВЕРШЕНСТВОВАНИЕ ПРОЕКТИРОВАНИЯ АКТИВНОЙ ЧАСТИ ВЕНТИЛЬНО-ИНДУКТОРНОЙ МАШИНЫ
|
ВВЕДЕНИЕ 4
ГЛАВА 1 ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ВЕНТИЛЬНО-ИНДУКТОРНОГО ЭЛЕКТРОПРИВОДА В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ 10
1.1 Обоснование актуальности задач исследований 10
1.2 Конструктивные особенности ВИМ, принцип работы, достоинства и
недостатки 12
1.3 Области применения и перспективы развития ВИМ 18
Выводы по главе 1 31
ГЛАВА 2 СОВЕРШЕНСТВОВАНИЕ ПРОЕКТИРОВАНИЯ АКТИВНОЙ ЧАСТИ ВИМ 33
2.1 Анализ методик проектирования ВИМ 33
2.2 Математическая модель и алгоритм проектирования ВИМ 41
2.3 Выбор методов оптимизации активной части ВИМ. Описание
используемых алгоритмов оптимизации 46
2.4 Назначение и основные функции программы автоматизированного
проектирования с применением оптимизационных алгоритмов 56
Выводы по главе 2 68
ГЛАВА 3 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОТДЕЛЬНЫХ ФРАГМЕНТОВ
МАГНИТНОЙ СИСТЕМЫ НА СРЕДНЕЕ ЗНАЧЕНИЕ ЭЛЕКТРОМАГНИТНОГО МОМЕНТА 69
3.1 Выбор критерия и параметров оптимизации 69
3.2 Исследование влияния фрагментов магнитной системы ВИМ 6/4 на
среднее значение электромагнитного момента 75
3.3 Исследование влияния фрагментов магнитной системы ВИМ 12/8 на
среднее значение электромагнитного момента 85
3.4 Оптимизация магнитной системы ВИД 12/8 при работе в одноимпульсном
режиме 95
3.5 Исследование влияния фрагментов магнитной системы ВИМ 6/6 на
среднее значение электромагнитного момента 98
3.6 Определение чувствительности электромагнитного момента к
изменению геометрических величин магнитной системы ВИМ 6/6 108
3.7 Анализ результатов проведенных исследований и выработка
рекомендаций 111
Выводы по главе 3 114
ГЛАВА 4 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
И ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРИНЯТЫХ ТЕХНИЧЕСКИХ РЕШЕНИЙ 116
4.1 Постановка задачи экспериментальных исследований 116
4.2 Описание испытательной установки 118
4.3 Методика проведения испытаний 122
4.4 Результаты экспериментальных исследований 124
4.5 Пример использования ВИМ с оптимальной магнитной системой и его
экономическое обоснование 130
Выводы по главе 4 133
ЗАКЛЮЧЕНИЕ 134
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 136
Приложение 1 147
Свидетельство о государственной регистрации программы для ЭВМ 147
Приложение 2 148
Технические характеристики весового терминала КСК18 148
Приложение 3 149
Акт об использовании результатов диссертационной работы 149
Приложение 4 150
Акт внедрения в учебный процесс результатов исследований, полученных в диссертационной работе 150
ГЛАВА 1 ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ВЕНТИЛЬНО-ИНДУКТОРНОГО ЭЛЕКТРОПРИВОДА В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ 10
1.1 Обоснование актуальности задач исследований 10
1.2 Конструктивные особенности ВИМ, принцип работы, достоинства и
недостатки 12
1.3 Области применения и перспективы развития ВИМ 18
Выводы по главе 1 31
ГЛАВА 2 СОВЕРШЕНСТВОВАНИЕ ПРОЕКТИРОВАНИЯ АКТИВНОЙ ЧАСТИ ВИМ 33
2.1 Анализ методик проектирования ВИМ 33
2.2 Математическая модель и алгоритм проектирования ВИМ 41
2.3 Выбор методов оптимизации активной части ВИМ. Описание
используемых алгоритмов оптимизации 46
2.4 Назначение и основные функции программы автоматизированного
проектирования с применением оптимизационных алгоритмов 56
Выводы по главе 2 68
ГЛАВА 3 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОТДЕЛЬНЫХ ФРАГМЕНТОВ
МАГНИТНОЙ СИСТЕМЫ НА СРЕДНЕЕ ЗНАЧЕНИЕ ЭЛЕКТРОМАГНИТНОГО МОМЕНТА 69
3.1 Выбор критерия и параметров оптимизации 69
3.2 Исследование влияния фрагментов магнитной системы ВИМ 6/4 на
среднее значение электромагнитного момента 75
3.3 Исследование влияния фрагментов магнитной системы ВИМ 12/8 на
среднее значение электромагнитного момента 85
3.4 Оптимизация магнитной системы ВИД 12/8 при работе в одноимпульсном
режиме 95
3.5 Исследование влияния фрагментов магнитной системы ВИМ 6/6 на
среднее значение электромагнитного момента 98
3.6 Определение чувствительности электромагнитного момента к
изменению геометрических величин магнитной системы ВИМ 6/6 108
3.7 Анализ результатов проведенных исследований и выработка
рекомендаций 111
Выводы по главе 3 114
ГЛАВА 4 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
И ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРИНЯТЫХ ТЕХНИЧЕСКИХ РЕШЕНИЙ 116
4.1 Постановка задачи экспериментальных исследований 116
4.2 Описание испытательной установки 118
4.3 Методика проведения испытаний 122
4.4 Результаты экспериментальных исследований 124
4.5 Пример использования ВИМ с оптимальной магнитной системой и его
экономическое обоснование 130
Выводы по главе 4 133
ЗАКЛЮЧЕНИЕ 134
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 136
Приложение 1 147
Свидетельство о государственной регистрации программы для ЭВМ 147
Приложение 2 148
Технические характеристики весового терминала КСК18 148
Приложение 3 149
Акт об использовании результатов диссертационной работы 149
Приложение 4 150
Акт внедрения в учебный процесс результатов исследований, полученных в диссертационной работе 150
Актуальность проблемы. Трудно назвать область деятельности человека, где бы не применялись электромеханические преобразователи (ЭМП) энергии. ЭМП составляют основу современного промышленного производства, используются в транспортных системах, робототехнических комплексах, в медицине, сельском хозяйстве и других областях на земле и в космосе. Постоянно возрастающие требования к динамическим, энергетическим и массогабаритным характеристикам ЭМП требуют совершенствования всех компонентов, прежде всего активных частей, участвующих в электромеханическом преобразовании энергии.
Одним из перспективных в настоящее время ЭМП является вентильно - индукторный, обладающий высокими технико-экономическими показателями. В мировой практике вентильно-индукторные электрические машины (ВИМ) в составе вентильно-индукторных электроприводов (ВИП) применяются во многих областях. Основной причиной расширения области их применения является ряд преимуществ, таких как: простота конструкции, надёжность, относительно низкая стоимость в изготовлении, а также высокие энергетические характеристики и массогабаритные показатели.
К настоящему времени выполнено достаточно много теоретических и практических исследований, посвященных улучшению технико-экономических показателей этого типа привода.
Первые работы по созданию ВИП (англоязычное название Switched Reluctance Driver - SRD) связаны с именами таких зарубежных и российских ученых как P.J. Lawrenson, T.J. Miller, R. Krishnan, Л.Ф. Коломийцев, в которых раскрыты основные преимущества и недостатки ВИП. В России дальнейшее развитие ВИП получили в трудах Н.Ф. Ильинского, В.Ф. Козаченко, М.Г. Бычкова, В.В. Кузнецова, С.А. Пахомина, Г.К. Птаха, В.В. Рымшы, А.Д. Петрушина и др.
Для того, чтобы ВИП получил более широкое практическое использование, необходимо совершенствование методов его проектирования с применением современного программного обеспечения и методов оптимизации.
Одним из центральных вопросов при проектировании является создание оптимальной геометрии активной части ВИМ, которая определяет основные ее показатели, в том числе и экономические. Известно, что выходными параметрами ВИМ, которые связывают электрическую машину и остальное технологическое оборудование, служат электромагнитный момент и частота вращения. Таким образом, актуальной является задача проектирования ВИМ из расчета получения максимального вращающего момента в широком диапазоне частот вращения при сохранении высокого значения КПД, минимальных габаритов, массы и других важных технико-экономических показателей, включая тепловое состояние электрической машины.
Степень разработанности проблемы. В настоящее время существуют различные методики проектирования ВИМ, связанные с именами таких ученых, как R. Krishnan, T.J. Miller, T. Wichert, В.В. Кузнецов, С.А. Пахомин, Ю.А. Голландцев, В.Г. Фисенко, А.Н. Попов.
Однако существующие расчетные схемы не используют в полной мере возможности оптимизационных алгоритмов. Данная диссертационная работа направлена на совершенствование ВИМ путем разработки научно-обоснованных алгоритмов проектирования с применением методов оптимизации.
Объект исследований- активная часть вентильно-индукторной электрической машины.
Предмет исследований- параметры и характеристики вентильно-индукторной электрической машины.
Целью работы является улучшение параметров и характеристик электрических машин вентильно-индукторного типа путем совершенствования алгоритмов проектирования.
Задачи исследования, которые поставлены в работе:
- совершенствование алгоритмов проектирования активной части ВИМ;
- создание программного комплекса для автоматизации проектирования активной части ВИМ с учетом методов оптимизации;
- исследование влияния фрагментов магнитной системы ВИМ на среднее значение электромагнитного момента;
- исследование восприимчивости величины среднего электромагнитного момента к изменению найденных оптимальных геометрических размеров магнитной системы ВИМ;
- проведение экспериментальных испытаний опытных образцов ВИМ и выдача рекомендаций по методике проектирования ВИМ.
Научная новизна данного диссертационного исследования заключается в следующем:
- разработаны алгоритм и программа автоматизированного проектирования с оптимизацией активной части ВИМ;
- установлена закономерность влияния отдельных геометрических элементов активной части ВИМ на формирование среднего значения электромагнитного момента при различных конфигурациях магнитных систем и количестве фаз;
- предложены научно обоснованные рекомендации, определяющие приоритет при выборе изменяемых параметров геометрических размеров активной части ВИМ при проведении оптимизационных расчетов;
- установлены зависимости величины среднего значения электромагнитного момента от изменения найденных оптимальных геометрических размеров магнитной системы ВИМ.
Теоретическая и практическая ценность диссертационной работы.
Разработанные алгоритм и программа компьютерного проектирования с оптимизацией геометрических размеров активной части ВИМ позволяет повысить качество проектирования, что в свою очередь дает возможность получить ВИМ, обладающую высокой конкурентоспособностью на мировом рынке.
Проведенные исследования о влиянии конфигурации магнитопровода ВИМ на величину среднего электромагнитного момента может быть использовано разработчиками ВИМ в случаях, когда в конкретном техническом задании (ТЗ) оговорены условия и ограничения. В этой ситуации разработчик может вы-брать для оптимизации только те элементы активной части магнитной системы, которые оказывают доминирующее влияние на величину электромагнитного момента. Результаты исследования по определению восприимчивости среднего значения электромагнитного момента к изменению найденных оптимальных геометрических размеров магнитной системы могут быть применены на практике для оценки влияния возможных отклонений от оптимальных размеров вследствие особенностей технологии изготовления ВИМ или наличия в техническом задании каких-либо ограничений на размеры магнитной системы.
Так, использование результатов диссертационной работы позволило предприятию ООО «САПФИР» улучшить параметры и характеристики ВИП, а также внести рациональные изменения в технологию их изготовления с целью сокращения издержек производства и эксплуатации.
Методы исследований. При решении поставленных задач применялся комбинированный подход, основанный на сочетании метода теории поля и теории электрических цепей. Расчеты магнитного поля проводились основе метода конечных элементов (программа ГЕММ 4.2). В качестве методов оптимизации были выбраны детерминированный метод Нелдера - Мида (деформируемого многогранника) и стохастический метод Монте-Карло.
Основными положениями, выносимыми на защиту, являются:
- алгоритм и компьютерная программа автоматизированного проектирования с оптимизацией активной части ВИМ;
- закономерность влияния отдельных геометрических элементов активной части ВИМ на формирование среднего значения электромагнитного момента при вариациях конфигураций магнитных систем и количества фаз;
- комплекс рекомендаций, направленных на процесс принятия решений по рациональному выбору геометрических размеров активной части ВИМ;
- зависимость величины среднего значения электромагнитного момента от изменения найденных в результате оптимизационного расчета геометрических параметров магнитной системы ВИМ;
- результаты экспериментальных исследований, направленных на верификацию расчетных данных по определению величины среднего момента опытного образца ВИМ.
Достоверность и обоснованность полученных результатов обеспечены:
- корректностью принятых допущений при теоретическом анализе и математическом моделировании физических процессов;
- использованием специализированного программного обеспечения;
- анализом разработанных теоретических положений и данных экспериментальных исследований, полученными на экспериментальном стенде.
Апробация. Основные материалы и результаты диссертационной работы докладывались и обсуждались на:
- Международной научно-практической конференции «Транспорт- 2013», РГУПС, Ростов-на-Дону, 2013;
- XI Международной научно-практической конференции «Материалы и технологии XXI века», Пенза, 2013;
- Международной научно-практической конференции «Перспективы развития и эффективность функционирования транспортного комплекса Юга России», РГУПС, Ростов-на-Дону, 2015;
- Международной научно-практической конференции «Транспорт- 2015», РГУПС, Ростов-на-Дону, 2015;
- Международной научно-практической конференции «Новая наука: проблемы и перспективы», Стерлитамак, 2016;
- Международной научно-технической конференции «Актуальные проблемы электромеханики и электротехнологий», Екатеринбург, 2017.
С темой научной работы «Мировой опыт использования вентильно-индукторного двигателя и экономический эффект от оптимизации геометрии активной части вентильно-индукторного двигателя» был выигран конкурс обзоров «Я и мир 2030», организованный банком «Центр-Инвест».
Публикации. По материалам диссертационной работы опубликовано 17 печатных работ, из них 2 в изданиях, рекомендованных ВАК, одно свидетельство о регистрации программы.
Структура работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 103 наименований. Общий объем работы составляет 150 страниц, 58 рисунков, 19 таблиц.
Одним из перспективных в настоящее время ЭМП является вентильно - индукторный, обладающий высокими технико-экономическими показателями. В мировой практике вентильно-индукторные электрические машины (ВИМ) в составе вентильно-индукторных электроприводов (ВИП) применяются во многих областях. Основной причиной расширения области их применения является ряд преимуществ, таких как: простота конструкции, надёжность, относительно низкая стоимость в изготовлении, а также высокие энергетические характеристики и массогабаритные показатели.
К настоящему времени выполнено достаточно много теоретических и практических исследований, посвященных улучшению технико-экономических показателей этого типа привода.
Первые работы по созданию ВИП (англоязычное название Switched Reluctance Driver - SRD) связаны с именами таких зарубежных и российских ученых как P.J. Lawrenson, T.J. Miller, R. Krishnan, Л.Ф. Коломийцев, в которых раскрыты основные преимущества и недостатки ВИП. В России дальнейшее развитие ВИП получили в трудах Н.Ф. Ильинского, В.Ф. Козаченко, М.Г. Бычкова, В.В. Кузнецова, С.А. Пахомина, Г.К. Птаха, В.В. Рымшы, А.Д. Петрушина и др.
Для того, чтобы ВИП получил более широкое практическое использование, необходимо совершенствование методов его проектирования с применением современного программного обеспечения и методов оптимизации.
Одним из центральных вопросов при проектировании является создание оптимальной геометрии активной части ВИМ, которая определяет основные ее показатели, в том числе и экономические. Известно, что выходными параметрами ВИМ, которые связывают электрическую машину и остальное технологическое оборудование, служат электромагнитный момент и частота вращения. Таким образом, актуальной является задача проектирования ВИМ из расчета получения максимального вращающего момента в широком диапазоне частот вращения при сохранении высокого значения КПД, минимальных габаритов, массы и других важных технико-экономических показателей, включая тепловое состояние электрической машины.
Степень разработанности проблемы. В настоящее время существуют различные методики проектирования ВИМ, связанные с именами таких ученых, как R. Krishnan, T.J. Miller, T. Wichert, В.В. Кузнецов, С.А. Пахомин, Ю.А. Голландцев, В.Г. Фисенко, А.Н. Попов.
Однако существующие расчетные схемы не используют в полной мере возможности оптимизационных алгоритмов. Данная диссертационная работа направлена на совершенствование ВИМ путем разработки научно-обоснованных алгоритмов проектирования с применением методов оптимизации.
Объект исследований- активная часть вентильно-индукторной электрической машины.
Предмет исследований- параметры и характеристики вентильно-индукторной электрической машины.
Целью работы является улучшение параметров и характеристик электрических машин вентильно-индукторного типа путем совершенствования алгоритмов проектирования.
Задачи исследования, которые поставлены в работе:
- совершенствование алгоритмов проектирования активной части ВИМ;
- создание программного комплекса для автоматизации проектирования активной части ВИМ с учетом методов оптимизации;
- исследование влияния фрагментов магнитной системы ВИМ на среднее значение электромагнитного момента;
- исследование восприимчивости величины среднего электромагнитного момента к изменению найденных оптимальных геометрических размеров магнитной системы ВИМ;
- проведение экспериментальных испытаний опытных образцов ВИМ и выдача рекомендаций по методике проектирования ВИМ.
Научная новизна данного диссертационного исследования заключается в следующем:
- разработаны алгоритм и программа автоматизированного проектирования с оптимизацией активной части ВИМ;
- установлена закономерность влияния отдельных геометрических элементов активной части ВИМ на формирование среднего значения электромагнитного момента при различных конфигурациях магнитных систем и количестве фаз;
- предложены научно обоснованные рекомендации, определяющие приоритет при выборе изменяемых параметров геометрических размеров активной части ВИМ при проведении оптимизационных расчетов;
- установлены зависимости величины среднего значения электромагнитного момента от изменения найденных оптимальных геометрических размеров магнитной системы ВИМ.
Теоретическая и практическая ценность диссертационной работы.
Разработанные алгоритм и программа компьютерного проектирования с оптимизацией геометрических размеров активной части ВИМ позволяет повысить качество проектирования, что в свою очередь дает возможность получить ВИМ, обладающую высокой конкурентоспособностью на мировом рынке.
Проведенные исследования о влиянии конфигурации магнитопровода ВИМ на величину среднего электромагнитного момента может быть использовано разработчиками ВИМ в случаях, когда в конкретном техническом задании (ТЗ) оговорены условия и ограничения. В этой ситуации разработчик может вы-брать для оптимизации только те элементы активной части магнитной системы, которые оказывают доминирующее влияние на величину электромагнитного момента. Результаты исследования по определению восприимчивости среднего значения электромагнитного момента к изменению найденных оптимальных геометрических размеров магнитной системы могут быть применены на практике для оценки влияния возможных отклонений от оптимальных размеров вследствие особенностей технологии изготовления ВИМ или наличия в техническом задании каких-либо ограничений на размеры магнитной системы.
Так, использование результатов диссертационной работы позволило предприятию ООО «САПФИР» улучшить параметры и характеристики ВИП, а также внести рациональные изменения в технологию их изготовления с целью сокращения издержек производства и эксплуатации.
Методы исследований. При решении поставленных задач применялся комбинированный подход, основанный на сочетании метода теории поля и теории электрических цепей. Расчеты магнитного поля проводились основе метода конечных элементов (программа ГЕММ 4.2). В качестве методов оптимизации были выбраны детерминированный метод Нелдера - Мида (деформируемого многогранника) и стохастический метод Монте-Карло.
Основными положениями, выносимыми на защиту, являются:
- алгоритм и компьютерная программа автоматизированного проектирования с оптимизацией активной части ВИМ;
- закономерность влияния отдельных геометрических элементов активной части ВИМ на формирование среднего значения электромагнитного момента при вариациях конфигураций магнитных систем и количества фаз;
- комплекс рекомендаций, направленных на процесс принятия решений по рациональному выбору геометрических размеров активной части ВИМ;
- зависимость величины среднего значения электромагнитного момента от изменения найденных в результате оптимизационного расчета геометрических параметров магнитной системы ВИМ;
- результаты экспериментальных исследований, направленных на верификацию расчетных данных по определению величины среднего момента опытного образца ВИМ.
Достоверность и обоснованность полученных результатов обеспечены:
- корректностью принятых допущений при теоретическом анализе и математическом моделировании физических процессов;
- использованием специализированного программного обеспечения;
- анализом разработанных теоретических положений и данных экспериментальных исследований, полученными на экспериментальном стенде.
Апробация. Основные материалы и результаты диссертационной работы докладывались и обсуждались на:
- Международной научно-практической конференции «Транспорт- 2013», РГУПС, Ростов-на-Дону, 2013;
- XI Международной научно-практической конференции «Материалы и технологии XXI века», Пенза, 2013;
- Международной научно-практической конференции «Перспективы развития и эффективность функционирования транспортного комплекса Юга России», РГУПС, Ростов-на-Дону, 2015;
- Международной научно-практической конференции «Транспорт- 2015», РГУПС, Ростов-на-Дону, 2015;
- Международной научно-практической конференции «Новая наука: проблемы и перспективы», Стерлитамак, 2016;
- Международной научно-технической конференции «Актуальные проблемы электромеханики и электротехнологий», Екатеринбург, 2017.
С темой научной работы «Мировой опыт использования вентильно-индукторного двигателя и экономический эффект от оптимизации геометрии активной части вентильно-индукторного двигателя» был выигран конкурс обзоров «Я и мир 2030», организованный банком «Центр-Инвест».
Публикации. По материалам диссертационной работы опубликовано 17 печатных работ, из них 2 в изданиях, рекомендованных ВАК, одно свидетельство о регистрации программы.
Структура работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 103 наименований. Общий объем работы составляет 150 страниц, 58 рисунков, 19 таблиц.
В представленной диссертационной работе решена актуальная научно-техническая задача по совершенствованию метода проектирования ВИМ. По итогам диссертационной работы получены результаты, на основе которых сделаны следующие выводы:
1 Усовершенствован алгоритм проектирования ВИМ. Предложено до-полнить известные методики проектирования решением задачи оптимизации активной части ВИМ с помощью сочетания методов Монте-Карло и Нелдера - Мида, что позволило при относительно небольшом времени расчета получить глобальный экстремум, увеличив при этом средний электромагнитный момент ВИМ.
2 Создан программный комплекс для автоматизации проектирования с учетом оптимизации активной части ВИМ, который направлен на решение задачи по нахождению оптимальной конфигурации зубцово-пазовой зоны ВИМ по критерию максимума среднего электромагнитного момента.
3 Проведено исследование влияния фрагментов магнитной системы ВИМ различной конфигурации и с различным количеством фаз на среднее значение электромагнитного момента, которое позволило выделить как общие, так и частные закономерности изменения геометрических размеров ВИМ в результате оптимизации.
4 Исследована восприимчивость величины среднего электромагнитного момента к изменению найденных оптимальных геометрических размеров магнитной системы. Результаты исследования могут быть применены на практике для оценки влияния возможных отклонений от оптимальных размеров вследствие особенностей технологии изготовления ВИМ или наличия в техническом задании каких-либо ограничений на размеры магнитной системы.
5 Проведены экспериментальные исследования макетных образцов ВИМ с исходной конфигурацией магнитной системы и оптимизированной. Данные математического моделирования и экспериментальные результаты достаточно близки. Погрешность не превышает 5 %, что свидетельствует об адекватности алгоритма расчета и корректности принятых допущений.
Перспективы дальнейшей разработки темы диссертации заключаются в расширении возможностей программы «Оптимизация ВИМ» путем использования других критериев оптимизации и включения дополнительных оптимизируемых параметров, связанных с динамическими режимами работы ВИМ в широком диапазоне частот вращения и с ее нагрузочной диаграммой.
1 Усовершенствован алгоритм проектирования ВИМ. Предложено до-полнить известные методики проектирования решением задачи оптимизации активной части ВИМ с помощью сочетания методов Монте-Карло и Нелдера - Мида, что позволило при относительно небольшом времени расчета получить глобальный экстремум, увеличив при этом средний электромагнитный момент ВИМ.
2 Создан программный комплекс для автоматизации проектирования с учетом оптимизации активной части ВИМ, который направлен на решение задачи по нахождению оптимальной конфигурации зубцово-пазовой зоны ВИМ по критерию максимума среднего электромагнитного момента.
3 Проведено исследование влияния фрагментов магнитной системы ВИМ различной конфигурации и с различным количеством фаз на среднее значение электромагнитного момента, которое позволило выделить как общие, так и частные закономерности изменения геометрических размеров ВИМ в результате оптимизации.
4 Исследована восприимчивость величины среднего электромагнитного момента к изменению найденных оптимальных геометрических размеров магнитной системы. Результаты исследования могут быть применены на практике для оценки влияния возможных отклонений от оптимальных размеров вследствие особенностей технологии изготовления ВИМ или наличия в техническом задании каких-либо ограничений на размеры магнитной системы.
5 Проведены экспериментальные исследования макетных образцов ВИМ с исходной конфигурацией магнитной системы и оптимизированной. Данные математического моделирования и экспериментальные результаты достаточно близки. Погрешность не превышает 5 %, что свидетельствует об адекватности алгоритма расчета и корректности принятых допущений.
Перспективы дальнейшей разработки темы диссертации заключаются в расширении возможностей программы «Оптимизация ВИМ» путем использования других критериев оптимизации и включения дополнительных оптимизируемых параметров, связанных с динамическими режимами работы ВИМ в широком диапазоне частот вращения и с ее нагрузочной диаграммой.



