Разработка адаптированной к инженерной практике методики расчета энергетических характеристик установок с твердооксидными топливными элементами
|
Введение 5
Глава 1. Аналитический обзор 12
1.1. Основные характеристики топливных элементов 12
1.1.1. Уровень разработок энергетических установок на тотэ в России 12
1.1.2. Уровень мировых разработок в области тотэ 12
1.2. Механизм работы твердооксидного топливного элемента 14
1.3. Энергоустановки с паровым риформером 22
1.4. Энергоустановки с воздушным риформером 24
1.5. Энергоустановки с риформингом уходящими анодными газами 25
1.6. Методы расчета границы сажеобразования 27
1.7. Методы расчета равновесного состава продуктов неполного сгорания .... 32
1.8. Выводы к главе 1 36
Глава 2. Адаптированная к инженерной практике методика расчета равновесного состава 38
2.1. Расчет равновесного состава для воздушного, парового риформинга,
батарей тотэ и при рециркуляции анодных газов 38
2.1.1. Воздушный риформинг 39
2.1.2. Паровой риформинг 41
2.1.3. Риформинг уходящими анодными газами 44
2.1.4. Расчет состава анодного газа на выходе из тотэ 46
2.2. Расчет границы сажеобразования для воздушного риформера 48
2.3. Расчет степени рециркуляции /, исключающей сажеобразование в
воздушном риформере и анодном канале 50
2.4. Влияние значения степени рециркуляции на ЭДС ТОТЭ на основе
адаптированной к инженерной практике методики расчета 57
2.5. Зависимость теплоты реакции воздушного и парового риформинга от
отношения окислителя и топлива в исходной смеси 60
2.5.1. Воздушный риформинг 60
2.5.2. Паровой риформинг 64
2.6. Расчет необходимого количества теплоты при риформинге уходящими
анодными газами 65
2.7. Выводы по главе 2 70
Глава 3. Экспериментальное исследование воздушного риформера для энергетической установки на твердооксидных топливных элементах 72
3.1. Испытание воздушного риформера при нагреве электрическим
нагревателем 72
3.1.1. Результаты испытаний воздушного риформера при нагреве
электрическим нагревателем и анализ полученных данных 73
3.1.3. Вывод по испытаниям воздушного риформера при нагреве
электрическим нагревателем 75
3.2. Описание испытаний воздушного риформера совместно с каталитической
горелкой и теплообменником 75
3.2.1. Методика проведения испытаний 76
3.2.2. Математическая модель модуля «риформер/горелка/теплообменник»
для энергетической установки на тотэ 82
3.2.3. Результаты проведенных исследований 86
3.2.4. Анализ результатов испытаний воздушного риформера совместно с
каталитической горелкой и теплообменником 89
3.2.5. Оценка характеристик энергетической установки на базе модуля и
батарей тотэ 92
3.2.6. Выводы по испытаниям воздушного риформера совместно с
каталитической горелкой и теплообменником 95
3.3. Выводы по главе 3 95
глава 4. Экспериментальное исследование энергетической установки на базе тотэ мощностью 5 квт 96
4.1. Методика проведения испытаний энергетической установки на базе тотэ
мощностью 5квт 96
4.2. Описание полученных экспериментальных данных 101
4.3. Сравнение экспериментальных и расчетных данных 102
4.4. Математическая модель энергетической установки на базе тотэ
мощностью 5квт 110
4.5. Анализ результатов испытаний энергетической установки на базе тотэ
мощностью 5 квт 114
4.6. Выводы к главе 4 119
Заключение 121
Условные обозначения 122
Список литературы 127
Приложение А 136
Приложение Б 140
Приложение В 140
Глава 1. Аналитический обзор 12
1.1. Основные характеристики топливных элементов 12
1.1.1. Уровень разработок энергетических установок на тотэ в России 12
1.1.2. Уровень мировых разработок в области тотэ 12
1.2. Механизм работы твердооксидного топливного элемента 14
1.3. Энергоустановки с паровым риформером 22
1.4. Энергоустановки с воздушным риформером 24
1.5. Энергоустановки с риформингом уходящими анодными газами 25
1.6. Методы расчета границы сажеобразования 27
1.7. Методы расчета равновесного состава продуктов неполного сгорания .... 32
1.8. Выводы к главе 1 36
Глава 2. Адаптированная к инженерной практике методика расчета равновесного состава 38
2.1. Расчет равновесного состава для воздушного, парового риформинга,
батарей тотэ и при рециркуляции анодных газов 38
2.1.1. Воздушный риформинг 39
2.1.2. Паровой риформинг 41
2.1.3. Риформинг уходящими анодными газами 44
2.1.4. Расчет состава анодного газа на выходе из тотэ 46
2.2. Расчет границы сажеобразования для воздушного риформера 48
2.3. Расчет степени рециркуляции /, исключающей сажеобразование в
воздушном риформере и анодном канале 50
2.4. Влияние значения степени рециркуляции на ЭДС ТОТЭ на основе
адаптированной к инженерной практике методики расчета 57
2.5. Зависимость теплоты реакции воздушного и парового риформинга от
отношения окислителя и топлива в исходной смеси 60
2.5.1. Воздушный риформинг 60
2.5.2. Паровой риформинг 64
2.6. Расчет необходимого количества теплоты при риформинге уходящими
анодными газами 65
2.7. Выводы по главе 2 70
Глава 3. Экспериментальное исследование воздушного риформера для энергетической установки на твердооксидных топливных элементах 72
3.1. Испытание воздушного риформера при нагреве электрическим
нагревателем 72
3.1.1. Результаты испытаний воздушного риформера при нагреве
электрическим нагревателем и анализ полученных данных 73
3.1.3. Вывод по испытаниям воздушного риформера при нагреве
электрическим нагревателем 75
3.2. Описание испытаний воздушного риформера совместно с каталитической
горелкой и теплообменником 75
3.2.1. Методика проведения испытаний 76
3.2.2. Математическая модель модуля «риформер/горелка/теплообменник»
для энергетической установки на тотэ 82
3.2.3. Результаты проведенных исследований 86
3.2.4. Анализ результатов испытаний воздушного риформера совместно с
каталитической горелкой и теплообменником 89
3.2.5. Оценка характеристик энергетической установки на базе модуля и
батарей тотэ 92
3.2.6. Выводы по испытаниям воздушного риформера совместно с
каталитической горелкой и теплообменником 95
3.3. Выводы по главе 3 95
глава 4. Экспериментальное исследование энергетической установки на базе тотэ мощностью 5 квт 96
4.1. Методика проведения испытаний энергетической установки на базе тотэ
мощностью 5квт 96
4.2. Описание полученных экспериментальных данных 101
4.3. Сравнение экспериментальных и расчетных данных 102
4.4. Математическая модель энергетической установки на базе тотэ
мощностью 5квт 110
4.5. Анализ результатов испытаний энергетической установки на базе тотэ
мощностью 5 квт 114
4.6. Выводы к главе 4 119
Заключение 121
Условные обозначения 122
Список литературы 127
Приложение А 136
Приложение Б 140
Приложение В 140
Актуальность работы и степень разработанности в мире
Ежегодно количество людей на планете растет, и увеличивается потребность в электрической энергии, при этом все большее внимание уделяется эффективности и экологической безопасности источников преобразования энергии, так как запасы ископаемых топлив истощаются, а экологическая обстановка во многих районах достаточно сложная. Кроме того, многие страны, включая Россию, уделяют особенное внимание развитию распределенной энергетики, как более выгодной в экономическом, технологическом и оборонном аспекте.
Широко используемое производство электроэнергии путем сжигания углеродсодержащего топлива и использование полученной теплоты для совершения механической работы в двигателе, вращающем электрогенератор, не является простейшим и экологически безопасным путем преобразования химической энергии топлива в электрическую. Прямое превращение энергии химических реакций реализуют в топливных элементах (ТЭ), которые состоят из двух электродов и электролита между ними (приложение А) [1].
На рисунке 1 представлено сравнение КПД топливных элементов и других систем получения электроэнергии (рассчитанного по низшей теплоте сгорания топлива). Видно, что в диапазоне до 100 МВт наиболее эффективными являются установки на топливных элементах, а в диапазоне от 2 до 800 МВт - гибридные системы на основе высокотемпературных топливных элементов и газовых турбин.
Электрохимическое преобразование топлива позволяет получить достаточно высокий КПД, до 60 %, и экологически чистый состав продуктов реакции (водяной пар, азот, углекислый газ) - именно эти показатели привлекают разработчиков энергетических систем вести исследования в области топливных элементов.
Для энергетических установок, применяемых в стационарной распределенной промышленной теплоэнергетике, наиболее удобными являются твердооксидные (ТОТЭ) и расплавкарбонатные (РКТЭ) топливные элементы, так как в них в качестве окислителя можно использовать воздух, а в качестве топлива - смесь СО и Н2 (синтез-газ).
Существенной проблемой на пути широкого распространения ТЭ с расплавленным карбонатным электролитом является относительно небольшой ресурс работы, так как в расплаве в присутствии О2 и СО2 происходит коррозия материала катода, что быстро снижает вырабатываемую мощность. Поэтому топливные элементы с твердооксидным электролитом сегодня находят все более широкое применение в промышленной теплоэнергетике. Кроме того, в них можно получать электроэнергию из различных типов топлив, таких как природный газ, дизельное топливо, пропан, этанол, метанол, биогаз, уголь или чистый водород.
Перед внедрением установок на базе твердооксидных топливных элементов на объекты заказчика необходимо определить эффективность оборудования и особенности его эксплуатации, а также получить необходимые параметры для внесения в систему управления и проведения анализа эффективности работы.
При разработке энергетической установки на ТОТЭ необходимо выполнять расчеты ряда параметров, таких как состав синтез-газа на выходе из риформера, температуры, степень использования топлива, граница сажеобразования для воз-душного риформера, ЭДС единичных элементов и т. д., чтобы создавать на их основе режимные программы. Для решения этих задач необходимы адаптированные к инженерной практике методики расчета основных энергетических параметров. Сегодня разработано программное обеспечение, которое не может быть применимо в установках на твердооксидных топливных элементах в связи с тем, что все они разработаны для научно-теоретических расчетов и не могут применяться в оборудовании.
Цель работы
Разработка и верификация адаптированной к инженерной практике методики расчета основных характеристик энергетических установок на твердооксидных топливных элементах с паровым, воздушным риформером или с рециркуляцией уходящих газов, который при применении позволит обеспечить повышение маневренности и надежности системы, а также снижение стоимости установки.
Для достижения цели в работе поставлен и решен ряд научно-технических задач:
1. Разработана адаптированная к инженерной практике методика расчета равновесного состава продуктов неполного сгорания для энергетических установок на твердооксидных топливных элементах с паровым, воздушным риформером или с рециркуляцией уходящих газов и определены границы его применимости.
2. Проведены режимные испытания модуля воздушный риформер/ каталитическая горелка/теплообменник и энергетической установки на базе твердооксидных топливных элементов мощностью 5 кВт. Определены основные параметры обору-дования и особенности его эксплуатации, а также получены значения для внесения в систему управления;
3. Разработаны механизмы устойчивой работы воздушного риформера с катализатором на основе никеля после краткосрочного прохождения зоны сажеобразования;
4. Разработан адаптированный к инженерной практике метод расчета основных энергетических параметров модуля воздушный риформер/каталитическая горелка/ теплообменник и энергетической установки на ТОТЭ с паровым риформером на основе анализа уравнений теплового баланса основных звеньев оборудования.
Научная новизна и теоретическая значимость работы
1. Подтверждена возможность устойчивой работы воздушного риформера природного газа с катализатором на основе никеля после краткосрочного прохождения зоны сажеобразования, оформлены рекомендации для инженерной практики для обеспечения безопасной работы оборудования в таких условиях.
2. Получена аналитическая зависимость теплоты реакции парового и воздушного риформинга от коэффициента подачи воздуха и водяного пара, соответственно.
3. Определены влияние степени рециркуляции на ЭДС топливного элемента и степень рециркуляции обеспечивающая протекание реакций в риформере с отсутствием сажеобразования. Выданы рекомендации для обеспечения работоспособности установок на ТОТЭ рециркуляцией анодных газов.
4. Предложена адаптированная к инженерной практике методика расчета основных энергетических характеристик установок на твердооксидных топливных эле-ментах с паровым и воздушным риформером, а также при рециркуляции анодных газов.
Практическая значимость работы
1. Предложенная адаптированная к инженерной практике методика расчета основных энергетических параметров позволяет при внедрении в систему управления энергетической установкой на ТОТЭ повысить ее быстродействие.
2. Результаты расчетно-теоретических исследований с проведенными режимными испытаниями позволяют осуществлять безопасную работу энергетических установок на базе ТОТЭ с воздушным риформером вблизи зоны сажеобразования.
3. Разработанная адаптированная к инженерной практике методика позволяет выполнять прогнозирование необходимых параметров при разработке и проектировании установок с ТОТЭ различной мощности с достаточной для практики точностью.
Внедрение
Адаптированная к инженерной практике методика и результаты расчетно-теоретических исследований использованы при создании энергетической установки на твердооксидных топливных элементах. Данная установка разработана ООО «УПК», резидентом фонда Сколково, в рамках проекта «Создание энергоустановки на ТОТЭ для станций катодной защиты нефтегазового сектора и линейки установок для других отраслей народного хозяйства» в соответствии с соглашением 23.04.2013 № Г-13-130, по «Временным техническим требованиям к установке катодной защиты ПАО Газпром». Необходимость разработки и внедрения энергетических установок на базе твердооксидных топливных элементов на объекты нефтегазового сектора подтверждена справкой о внедрении №08/02-08-15 от 09.06.2016 выданная Медногорским ЛПУ МГ, филиал ООО «Газпромтрансгаз Екатеринбург», справкой о внедрении №1 от 09.06.2016 выданной ООО «УПК» (Приложение Б) и Перечнем наиболее важных видов продукции для импортозамещения и локализации производств с целью технологического развития ОАО "Газпром" от 2015 г. (п. 1.1.1.12). Разработанная установка прошла заводские испытания, доказав свою эффективность и подготовлена для прохождения опытно-промышленной эксплуатации на объекте заказчика.
Личное участие автора
Заключается в постановке целей и задач исследований, разработке адаптированной к инженерной практике методики расчета, проведении экспериментальных исследований, разработке энергетической установки с воздушным риформером, обобщении результатов экспериментальных и численных исследований, разработке рекомендаций по использованию результатов.
Методология и методы исследования
Для решения поставленных задач в диссертации использованы основные теоретические положения теории тепло-массообмена, физической химии, данные по константам равновесия реакций горения и конверсии, уравнения материального и теплового баланса. Численное моделирование выполнено с использованием программных продуктов Microsoft Excel, Mathcad 15 и MathCAD Prime 3.1, верификация разработанных моделей выполнена на основании полученных автором результатов экспериментальных исследований, апробированных аналитических зависимостей и на основании уже известных данных.
Положения, выносимые на защиту
1. Зависимость теплоты сгорания реакции парового и воздушного риформинга от коэффициента подачи окислителя (воздуха или водяного пара) полученная на основе адаптированной к инженерной практике методики расчета равновесного состава.
2. Результаты испытаний Модуля риформер/горелка/теплообменник и энергетической установки на твердооксидных топливных элементах с паровым риформером мощностью 5 кВт.
3. Адаптированная к инженерной практике методика расчета основных энергетических характеристик установки на твердооксидных топливных элементах применимую для анализа работы и при разработке энергетических установок на ТОТЭ.
Степень достоверности и апробация результатов
Основные результаты исследований, приведенные в диссертации, докладывались на VII заочной международной научно-практической конференции «Система управления экологической безопасностью», Екатеринбург, 30-31 мая 2013; Конференции с международным участием «VIII Всероссийский семинар ВУЗов по теплофизике и теплоэнергетике» 12-14 ноября, 2013 года, Екатеринбург, УрФУ; VIII Ежегодной Международной научно-практической конференции «Повышение эффективности энергетического оборудования -2013», 11-13 декабря, 2013 г., Москва, МЭИ; Шестой Российской национальной конференции по теплообмену 27-31 октября 2014 г., Москва, МЭИ; VII международной научной конференции молодых ученых Электротехника. Электротехнология. Энергетика - 2015; г. Новосибирск, 9-12 июня 2015 г., Международной конференции SOFC XIV, Глазго, июль 2015 г.; Конференции «Энерго- и ресурсосбережение нетрадиционные и возобновляемые источники энергии» 15-18 декабря 2015 г., УрФУ; XV Минский международный форум по тепломассообмену, 23 - 26 мая 2016 г.; Конференции Energy Quest 2016, Аскона, Италия, 6-8 сентября 2016 года.
Публикации
Всего по теме диссертации опубликовано 17 статей, из них 4 по перечню ВАК, одно учебное пособие с грифом УМО, получено 7 патентов.
Обоснование соответствия диссертации паспорту научной специальности 05.14.04 - «Промышленная теплоэнергетика»
Пункт 3. (из паспорта специальности) Теоретические и экспериментальные исследования процессов тепло- и массопереноса в тепловых системах и установках, использующих тепло. Совершенствование методов расчета тепловых сетей и установок с целью улучшения их технико-экономических характеристик, экономии энергетических ресурсов.
Пункт 5. (из паспорта специальности) Оптимизация параметров тепловых технологических процессов и разработка оптимальных схем установок, использующих тепло, с целью экономии энергетических ресурсов и улучшения качества продукции в технологических процессах.
В рамках диссертационной работы проводилась оптимизация тепловой схемы теплотехнического оборудования на базе твердооксидных топливных элементов на основании разработанной адаптированной к инженерной практике методики расчета с целью сбережения энергетических ресурсов и уменьшения затрат.
Диссертация состоит из введения, четырех глав, заключения, перечня условных обозначений, списка литературы и двух приложений. Весь материал изложен на 142 страницах, содержит 61 рисунок, 128 формул, 15 таблиц.
Ежегодно количество людей на планете растет, и увеличивается потребность в электрической энергии, при этом все большее внимание уделяется эффективности и экологической безопасности источников преобразования энергии, так как запасы ископаемых топлив истощаются, а экологическая обстановка во многих районах достаточно сложная. Кроме того, многие страны, включая Россию, уделяют особенное внимание развитию распределенной энергетики, как более выгодной в экономическом, технологическом и оборонном аспекте.
Широко используемое производство электроэнергии путем сжигания углеродсодержащего топлива и использование полученной теплоты для совершения механической работы в двигателе, вращающем электрогенератор, не является простейшим и экологически безопасным путем преобразования химической энергии топлива в электрическую. Прямое превращение энергии химических реакций реализуют в топливных элементах (ТЭ), которые состоят из двух электродов и электролита между ними (приложение А) [1].
На рисунке 1 представлено сравнение КПД топливных элементов и других систем получения электроэнергии (рассчитанного по низшей теплоте сгорания топлива). Видно, что в диапазоне до 100 МВт наиболее эффективными являются установки на топливных элементах, а в диапазоне от 2 до 800 МВт - гибридные системы на основе высокотемпературных топливных элементов и газовых турбин.
Электрохимическое преобразование топлива позволяет получить достаточно высокий КПД, до 60 %, и экологически чистый состав продуктов реакции (водяной пар, азот, углекислый газ) - именно эти показатели привлекают разработчиков энергетических систем вести исследования в области топливных элементов.
Для энергетических установок, применяемых в стационарной распределенной промышленной теплоэнергетике, наиболее удобными являются твердооксидные (ТОТЭ) и расплавкарбонатные (РКТЭ) топливные элементы, так как в них в качестве окислителя можно использовать воздух, а в качестве топлива - смесь СО и Н2 (синтез-газ).
Существенной проблемой на пути широкого распространения ТЭ с расплавленным карбонатным электролитом является относительно небольшой ресурс работы, так как в расплаве в присутствии О2 и СО2 происходит коррозия материала катода, что быстро снижает вырабатываемую мощность. Поэтому топливные элементы с твердооксидным электролитом сегодня находят все более широкое применение в промышленной теплоэнергетике. Кроме того, в них можно получать электроэнергию из различных типов топлив, таких как природный газ, дизельное топливо, пропан, этанол, метанол, биогаз, уголь или чистый водород.
Перед внедрением установок на базе твердооксидных топливных элементов на объекты заказчика необходимо определить эффективность оборудования и особенности его эксплуатации, а также получить необходимые параметры для внесения в систему управления и проведения анализа эффективности работы.
При разработке энергетической установки на ТОТЭ необходимо выполнять расчеты ряда параметров, таких как состав синтез-газа на выходе из риформера, температуры, степень использования топлива, граница сажеобразования для воз-душного риформера, ЭДС единичных элементов и т. д., чтобы создавать на их основе режимные программы. Для решения этих задач необходимы адаптированные к инженерной практике методики расчета основных энергетических параметров. Сегодня разработано программное обеспечение, которое не может быть применимо в установках на твердооксидных топливных элементах в связи с тем, что все они разработаны для научно-теоретических расчетов и не могут применяться в оборудовании.
Цель работы
Разработка и верификация адаптированной к инженерной практике методики расчета основных характеристик энергетических установок на твердооксидных топливных элементах с паровым, воздушным риформером или с рециркуляцией уходящих газов, который при применении позволит обеспечить повышение маневренности и надежности системы, а также снижение стоимости установки.
Для достижения цели в работе поставлен и решен ряд научно-технических задач:
1. Разработана адаптированная к инженерной практике методика расчета равновесного состава продуктов неполного сгорания для энергетических установок на твердооксидных топливных элементах с паровым, воздушным риформером или с рециркуляцией уходящих газов и определены границы его применимости.
2. Проведены режимные испытания модуля воздушный риформер/ каталитическая горелка/теплообменник и энергетической установки на базе твердооксидных топливных элементов мощностью 5 кВт. Определены основные параметры обору-дования и особенности его эксплуатации, а также получены значения для внесения в систему управления;
3. Разработаны механизмы устойчивой работы воздушного риформера с катализатором на основе никеля после краткосрочного прохождения зоны сажеобразования;
4. Разработан адаптированный к инженерной практике метод расчета основных энергетических параметров модуля воздушный риформер/каталитическая горелка/ теплообменник и энергетической установки на ТОТЭ с паровым риформером на основе анализа уравнений теплового баланса основных звеньев оборудования.
Научная новизна и теоретическая значимость работы
1. Подтверждена возможность устойчивой работы воздушного риформера природного газа с катализатором на основе никеля после краткосрочного прохождения зоны сажеобразования, оформлены рекомендации для инженерной практики для обеспечения безопасной работы оборудования в таких условиях.
2. Получена аналитическая зависимость теплоты реакции парового и воздушного риформинга от коэффициента подачи воздуха и водяного пара, соответственно.
3. Определены влияние степени рециркуляции на ЭДС топливного элемента и степень рециркуляции обеспечивающая протекание реакций в риформере с отсутствием сажеобразования. Выданы рекомендации для обеспечения работоспособности установок на ТОТЭ рециркуляцией анодных газов.
4. Предложена адаптированная к инженерной практике методика расчета основных энергетических характеристик установок на твердооксидных топливных эле-ментах с паровым и воздушным риформером, а также при рециркуляции анодных газов.
Практическая значимость работы
1. Предложенная адаптированная к инженерной практике методика расчета основных энергетических параметров позволяет при внедрении в систему управления энергетической установкой на ТОТЭ повысить ее быстродействие.
2. Результаты расчетно-теоретических исследований с проведенными режимными испытаниями позволяют осуществлять безопасную работу энергетических установок на базе ТОТЭ с воздушным риформером вблизи зоны сажеобразования.
3. Разработанная адаптированная к инженерной практике методика позволяет выполнять прогнозирование необходимых параметров при разработке и проектировании установок с ТОТЭ различной мощности с достаточной для практики точностью.
Внедрение
Адаптированная к инженерной практике методика и результаты расчетно-теоретических исследований использованы при создании энергетической установки на твердооксидных топливных элементах. Данная установка разработана ООО «УПК», резидентом фонда Сколково, в рамках проекта «Создание энергоустановки на ТОТЭ для станций катодной защиты нефтегазового сектора и линейки установок для других отраслей народного хозяйства» в соответствии с соглашением 23.04.2013 № Г-13-130, по «Временным техническим требованиям к установке катодной защиты ПАО Газпром». Необходимость разработки и внедрения энергетических установок на базе твердооксидных топливных элементов на объекты нефтегазового сектора подтверждена справкой о внедрении №08/02-08-15 от 09.06.2016 выданная Медногорским ЛПУ МГ, филиал ООО «Газпромтрансгаз Екатеринбург», справкой о внедрении №1 от 09.06.2016 выданной ООО «УПК» (Приложение Б) и Перечнем наиболее важных видов продукции для импортозамещения и локализации производств с целью технологического развития ОАО "Газпром" от 2015 г. (п. 1.1.1.12). Разработанная установка прошла заводские испытания, доказав свою эффективность и подготовлена для прохождения опытно-промышленной эксплуатации на объекте заказчика.
Личное участие автора
Заключается в постановке целей и задач исследований, разработке адаптированной к инженерной практике методики расчета, проведении экспериментальных исследований, разработке энергетической установки с воздушным риформером, обобщении результатов экспериментальных и численных исследований, разработке рекомендаций по использованию результатов.
Методология и методы исследования
Для решения поставленных задач в диссертации использованы основные теоретические положения теории тепло-массообмена, физической химии, данные по константам равновесия реакций горения и конверсии, уравнения материального и теплового баланса. Численное моделирование выполнено с использованием программных продуктов Microsoft Excel, Mathcad 15 и MathCAD Prime 3.1, верификация разработанных моделей выполнена на основании полученных автором результатов экспериментальных исследований, апробированных аналитических зависимостей и на основании уже известных данных.
Положения, выносимые на защиту
1. Зависимость теплоты сгорания реакции парового и воздушного риформинга от коэффициента подачи окислителя (воздуха или водяного пара) полученная на основе адаптированной к инженерной практике методики расчета равновесного состава.
2. Результаты испытаний Модуля риформер/горелка/теплообменник и энергетической установки на твердооксидных топливных элементах с паровым риформером мощностью 5 кВт.
3. Адаптированная к инженерной практике методика расчета основных энергетических характеристик установки на твердооксидных топливных элементах применимую для анализа работы и при разработке энергетических установок на ТОТЭ.
Степень достоверности и апробация результатов
Основные результаты исследований, приведенные в диссертации, докладывались на VII заочной международной научно-практической конференции «Система управления экологической безопасностью», Екатеринбург, 30-31 мая 2013; Конференции с международным участием «VIII Всероссийский семинар ВУЗов по теплофизике и теплоэнергетике» 12-14 ноября, 2013 года, Екатеринбург, УрФУ; VIII Ежегодной Международной научно-практической конференции «Повышение эффективности энергетического оборудования -2013», 11-13 декабря, 2013 г., Москва, МЭИ; Шестой Российской национальной конференции по теплообмену 27-31 октября 2014 г., Москва, МЭИ; VII международной научной конференции молодых ученых Электротехника. Электротехнология. Энергетика - 2015; г. Новосибирск, 9-12 июня 2015 г., Международной конференции SOFC XIV, Глазго, июль 2015 г.; Конференции «Энерго- и ресурсосбережение нетрадиционные и возобновляемые источники энергии» 15-18 декабря 2015 г., УрФУ; XV Минский международный форум по тепломассообмену, 23 - 26 мая 2016 г.; Конференции Energy Quest 2016, Аскона, Италия, 6-8 сентября 2016 года.
Публикации
Всего по теме диссертации опубликовано 17 статей, из них 4 по перечню ВАК, одно учебное пособие с грифом УМО, получено 7 патентов.
Обоснование соответствия диссертации паспорту научной специальности 05.14.04 - «Промышленная теплоэнергетика»
Пункт 3. (из паспорта специальности) Теоретические и экспериментальные исследования процессов тепло- и массопереноса в тепловых системах и установках, использующих тепло. Совершенствование методов расчета тепловых сетей и установок с целью улучшения их технико-экономических характеристик, экономии энергетических ресурсов.
Пункт 5. (из паспорта специальности) Оптимизация параметров тепловых технологических процессов и разработка оптимальных схем установок, использующих тепло, с целью экономии энергетических ресурсов и улучшения качества продукции в технологических процессах.
В рамках диссертационной работы проводилась оптимизация тепловой схемы теплотехнического оборудования на базе твердооксидных топливных элементов на основании разработанной адаптированной к инженерной практике методики расчета с целью сбережения энергетических ресурсов и уменьшения затрат.
Диссертация состоит из введения, четырех глав, заключения, перечня условных обозначений, списка литературы и двух приложений. Весь материал изложен на 142 страницах, содержит 61 рисунок, 128 формул, 15 таблиц.
Основные выводы диссертационной работы состоят в следующем:
1. Предложенная в работе адаптированная к инженерной практике методика расчета основных характеристик энергетических установок на твердооксидных топливных элементах с паровым, воздушным риформером и с рециркуляцией анодных газов может быть рекомендована для внедрения в энергетическую установку на твердооксидных топливных элементах, а также для проведения анализа эффективности работы оборудования. Внедрение методики позволило повысить маневренность системы управления и надежность оборудования.
2. По результатам проведенных режимных испытаний модуля воздушный риформер/каталитическая горелка/теплообменник и энергетической установки на базе ТОТЭ с паровым риформером мощностью 5 кВт были определены основные энергетические характеристики оборудования и получены необходимые данные для внесения в систему управления этими установками.
3. Экспериментально и теоретически подтверждена возможность устойчивой работы воздушного риформера с N1 катализатором после краткосрочного прохождения зоны сажеобразования. Разработаны рекомендации для инженерной практики направленные на поддержание работоспособности энергетических установок с воздушным риформером при работе вблизи зоны сажеобразования.
Результаты работы в дальнейшем применимы в инженерной практике при создании не только опытных образов энергетических установок на твердооксидных топливных элементах с различными тепловыми схемами, но и при создании серий-ной продукции.
1. Предложенная в работе адаптированная к инженерной практике методика расчета основных характеристик энергетических установок на твердооксидных топливных элементах с паровым, воздушным риформером и с рециркуляцией анодных газов может быть рекомендована для внедрения в энергетическую установку на твердооксидных топливных элементах, а также для проведения анализа эффективности работы оборудования. Внедрение методики позволило повысить маневренность системы управления и надежность оборудования.
2. По результатам проведенных режимных испытаний модуля воздушный риформер/каталитическая горелка/теплообменник и энергетической установки на базе ТОТЭ с паровым риформером мощностью 5 кВт были определены основные энергетические характеристики оборудования и получены необходимые данные для внесения в систему управления этими установками.
3. Экспериментально и теоретически подтверждена возможность устойчивой работы воздушного риформера с N1 катализатором после краткосрочного прохождения зоны сажеобразования. Разработаны рекомендации для инженерной практики направленные на поддержание работоспособности энергетических установок с воздушным риформером при работе вблизи зоны сажеобразования.
Результаты работы в дальнейшем применимы в инженерной практике при создании не только опытных образов энергетических установок на твердооксидных топливных элементах с различными тепловыми схемами, но и при создании серий-ной продукции.



