ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ
СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ
Актуальность проблемы. Изучение закономерностей теплопереноса в перспективных теплоносителях при мощном локальном тепловом воздействии является актуальной задачей теплофизики, являясь частью более широкой проблемы поиска средств интенсификации теплообмена для нужд теплоэнергетики. Уникальные свойства нанофлюидов (далее - НФ) и сверхкритических флюидов (далее - СКФ) позволяют рассматривать их в качестве перспективных теплоносителей в теплоэнергетике. Тем не менее, в силу структурной неоднородности таких сред и недостаточной изученности процессов тепломассопереноса в них, остается множество нерешенных вопросов, в том числе фундаментального плана, которые являются серьезным препятствием для применения НФ и СКФ именно в качестве теплоносителя. Также остро ощущается дефицит экспериментальных подходов для изучения таких объектов, в частности, остался совершенно неизученным важный предельный случай практически кондуктивного теплопереноса.
В современной научной литературе НФ отводится роль теплоносителей будущего, предполагая существенное улучшение их тепловых характеристик по сравнению с базовой жидкостью. Наш анализ состояния изучения теплообмена в НФ показал, что опытные данные по тепловой проводимости НФ представляют из себя противоречивую картину, общепринятого теоретического подхода также пока не существует. Основным экспериментальным методом изучения теплопереноса в НФ является метод нестационарного нагрева проволочного зонда для измерения теплопроводности (в англоязычной научной литературе - “Transient Hot-Wire technique”, сокращенно THW). Отметим, что опытные данные получены в узком интервале температур, в основном, в окрестности комнатной температуры, в отдельных работах - до 140 С. Также отметим и невысокую чувствительность THW-метода, вынуждающую исследователей работать с очень большим содержанием наночастиц в НФ, порядка единиц объемных процентов.
В отличие от нанофлюидов, изучение сверхкритических флюидов имеет давнюю историю. СКФ давно и успешно применяются в качестве теплоносителей, в мире уже десятки лет сотни теплоэлектростанций работают на сверхкритической воде. Тем не менее, в области теплообмена с использованием в качестве теплоносителей СКФ, остается множество нерешенных проблем. Поиски их решения мотивированы широко обсуждаемой в настоящее время проблемой создания ядерных реакторов 4-го поколения, охлаждаемых легкой сверхкритической водой. Удивительно, но остался совершенно неизученным теплоперенос в СКФ вне зоны конвективного теплообмена. Отметим два существенных момента. Во-первых, не существует теоретической модели, способной описать все режимы теплообмена, обнаруженные в опытах, во-вторых, все экспериментальные работы выполнены в квазистационарных режимах теплообмена. Анализ состояния обсуждаемых проблем послужил мотивацией для разработки нового метода изучения теплопереноса при мощном локальном тепловом воздействии и его апробации в таких перспективных и, одновременно, недостаточно изученных объектах, как НФ и СКФ. Создаваемые при этом в эксперименте условия дают уникальную возможность изучения особенностей практически кондуктивного теплопереноса, обеспечивая доступ к информации, которую невозможно получить никаким другим способом.
Объект исследования: жидкие теплоносители, в том числе, в не вполне устойчивых состояниях системы. К не вполне устойчивым системам будем относить системы, которые теряют устойчивость в процессе нагревания.
Цель работы: исследование особенностей теплопереноса при мощном локальном тепловыделении в нанофлюидах (в зависимости от природы базовой жидкости, концентрации и размеров наночастиц) и в сверхкритических флюидах в широком интервале сверхкритических давлений.
Для достижения цели работы был создан метод, базирующийся на управлении мощностью нагревателя-зонда и удовлетворяющий системе специфических требований.
Научная новизна
1. Создан метод, обеспечивающий управление мощностью нагревателя - зонда с целью изучения особенностей теплопереноса в импульсном процессе при мощном локальном тепловыделении, защищенный патентом на полезную модель.
2. Разработана методика сопоставления теплового сопротивления изучаемых объектов в зависимости от изменения внешнего параметра (концентрация, давление и т.п.).
3. Применение созданной методики к нанофлюидам позволило в разы расширить интервал температуры в сравнении с известными данными, вплоть до температур спонтанного вскипания, а также уверенно разрешать область сверхмалых концентраций наночастиц (10-2 объемн. %), что недостижимо другими методами. Обнаружен немонотонный ход теплового сопротивления нанофлюида в зависимости от концентрации относительно теплового сопротивления базовой жидкости.
4. Впервые в эксперименте осуществлен быстрый перевод вещества из пересжатого состояния в область сверхкритических температур по изобаре, что позволило наблюдать теплоперенос в сверхкритических флюидах вне зоны конвективного теплообмена.
5. Впервые обнаружен эффект порогового снижения интенсивности теплопереноса при заходе в область сверхкритических температур по изобаре и установлен диапазон давлений, при котором он наблюдается (1,0 ^ 3,0) р/рс.
Достоверность результатов обеспечивается: проверкой методики на различных объектах, в том числе, на общепринятых в теплофизических измерениях эталонах; применением для оценки погрешностей измерения электрических величин приборов, внесенных в Государственный реестр средств измерения; признание развитой методики измерений в качестве Государственного стандарта; обсуждением результатов работы на конференциях; получением рецензий от ведущих специалистов.
Теоретическая и практическая значимость работы
Фундаментальная значимость работы связана с получением новых знаний о закономерностях теплопереноса в нанофлюидах и сверхкритических флюидах в условиях мощного локального тепловыделения. Для сверхкритических флюидов полученное знание существенно уточняет физическую картину явлений переноса в сверхкритической области параметров.
В опытах с НФ удалось уверенно разрешать влияние сверхмалых концентраций наночастиц (~ 0,01 объемных %) на условия теплообмена. Освоенный в опытах диапазон температур расширен до сотен градусов, вплоть до температуры спонтанного вскипания базовой жидкости при заданном давлении. Таким образом, осуществлена возможность значительно более адекватной оценки применения НФ именно в качестве теплоносителя. Применительно к нанофлюидам, методика аттестована в качестве Госстандарта.
В опытах с СКФ обнаружен практически важный эффект, заключающийся в пороговом снижении интенсивности теплопереноса при заходе в область сверхкритических температур по изобаре, и диапазон давлений, при котором эффект проявляется. Этот результат позволил сформулировать рекомендации по выбору рабочего давления теплообменных устройств, работающих на сверхкритических теплоносителях.
Высокая чувствительность и быстродействие метода делают возможным его широкое применение для сопоставления эффективности конкурирующих образцов теплоносителей в условиях мощного тепловыделения.
Положения, выносимые на защиту
1. Созданная методика сопоставления теплового сопротивления различных образцов теплоносителей в строго заданных условиях тепловыделения позволяет разрешать малые изменения условий теплообмена, соответствующие малым изменениям состава образца или внешнего параметра.
2. Немонотонный ход изменения теплового сопротивления нанофлюидов в зависимости от концентрации обусловлен влиянием межфазного термического сопротивления (твердое тело/жидкость) и размерного эффекта теплопроводности материала имплантируемых в базовую жидкость частиц.
3. Пороговое снижение интенсивности теплопереноса при быстром изобарном заходе в область сверхкритических параметров обусловлено нарушением однородности вещества, что в общем случае сопровождается появлением дополнительного теплового сопротивления.
Личный вклад автора: Все представленные в работе результаты, разработка методики, создание экспериментальной установки, проведение экспериментов, обработка полученных результатов, подготовка основных публикаций, сделаны лично автором или при непосредственном его участии.
Апробация работы. Результаты работы докладывались: на II конференции «Наноматериалы и технологии» (Улан-Удэ, 2009), на XXIX и XXXI Сибирском теплофизическом семинаре (Новосибирск, 2010, 2014), на XIII РКТС (Новосибирск, 2011 г.), в качестве приглашенных докладов - на XII (2011) и XIII (2012) всероссийских школах-семинарах по проблемам физики конденсированного состояния вещества, на семинаре "Тепломассообмен и механика невесомости" в ИПМ им. А.Ю. Ишлинского РАН, на международных конференциях Nanofluids: Fundamentals and Applications II (Montreal, Canada, 2010), 19th (Aristotle University of Thessaloniki, Greece, 2011) и 20th (University of Lisboa, Portugal, 2014) European Conference on Thermophysical Properties, 18th Symposium on thermophysical properties (Boulder, CO, USA, 2012), на VII Научно¬практической конференции «Сверхкритические флюиды: фундаментальные основы, технологии, инновации» (г. Зеленоградск, Калининградская обл., 2013), на заседании Международной ассоциации по свойствам воды и водяного пара (IAPWS, Moscow, 2014).
Работа поддержана грантами РФФИ (№ 10-08-00538-а, № 13-08-00428) и Программой президиума УрО РАН «Арктика».
Публикации. По теме диссертации опубликовано 12 научных работ, в том числе, методика ГСССД, патент на полезную модель, 7 статей в журналах из перечня ВАК и 3 статьи в материалах конференций.
Структура диссертации. Диссертация состоит из введения, 4 глав, заключения, списка литературы из 88 наименований и содержит 118 стр. основного машинописного текста, 50 рисунков, 2 таблицы.
1. Создан метод управляемого импульсного нагрева зонда и создана экспериментальная установка для сопоставления интенсивности теплопереноса в жидких средах в масштабе малых характерных времен и размеров. Метод защищен патентом на полезную модель.
2. С помощью разработанного метода проведены опыты с двумя классами перспективных теплоносителей - нанофлюидами и сверхкритическими флюидами в широкой области изменения температуры (в импульсе) и давления. Для нанофлюидов созданная методика аттестована в качестве Государственного стандарта.
3. Установлено, что в зависимости от природы базовой жидкости, типа и размеров наночастиц, изменение относительного теплового сопротивления нанофлюида с ростом концентрации частиц может иметь как монотонный, так и немонотонный характер. Обнаружен факт взаимодействия наночастиц с поверхностью зонда, что является, с одной стороны, ограничением возможностей применения зондовых методик к таким объектам, с другой - указывает на возможность использования явления наноструктурирования поверхности в качестве технологии улучшения теплообмена в энергетике.
4. Обнаружен эффект порогового снижения интенсивности теплопереноса при переходе пересжатой жидкости в область сверхкритических температур по изобаре и установлен интервал давлений, в котором он проявляется: 1^3,0 рс.
5. В опытах по переводу пересжатой жидкости в область сверхкритических температур по изобаре установлено подобие наблюдаемых картин теплопереноса для различных веществ, в отношении которых были проведены опыты, если рассматривать их в приведенных значениях давления р/рс.
6. В отношении сверхкритических флюидов установлено отсутствие влияния на результаты наших опытов пиков избыточной теплопроводности и изобарной теплоемкости, известных из квазистационарных измерений, что было подтверждено с помощью компьютерного эксперимента, основанного на данных квазистатических опытов.
1. А. Берглс. Интенсификация теплообмена // В кн.: Теплообмен.
Достижения, проблемы, перспективы. Избранные труды 6-й международной конференции по теплообмену, перевод с английского под редакцией чл.-корр. АН СССР Б.С. Петухова. М.: Мир, 1981. С. 145-192.
2. Скрипов, В.П., Метастабильная жидкость, главная редакция физико-математической литературы изд-ва «Наука», 1972, 312 С.
3. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep. Nanofluids: Science and Technology. Hoboken, New Jersey: John Wiley & Sons, 2008.
4. В.И. Терехов, С.В. Калинина, В.В. Леманов. Механизм теплопереноса в наножидкостях: современное состояние проблемы. 1. Синтез и свойства наножидкостей // Теплофизика и аэромеханика. 2010. Т. 17, № 1. С. 1-15.
5. Beck M.P. Thermal Conductivity of Metal Oxide Nanofluids. PhD thesis. Georgia Institute of Technology, 2008.
6. Котов Ю.А. // О получении и исследованиях наноматериалов в ИЭФ УрО РАН. Вестник РАН. 2003. Т. 73, № 5. С. 435.
7. Pioro I.L. and Duffey R.B. Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. NY: ASME Press, 2007. 334 P.
8. Дубровина Э.Н., Скрипов В.П. Конвекция и теплообмен вблизи критической точки углекислоты // ЖПМТФ. 1965, №1. С. 115-119.
9. Курганов В. А., Теплообмен в трубах при сверхкритических давлениях теплоносителя: некоторые итоги научного исследования, Труды четвертой Российской конференции по теплообмену, 2006. Т.1. С. 74 - 83.
10. Горбатый Ю.Е., Бондаренко Г.В. Сверхкритическое состояние воды // Сверхкритические флюиды: теория и практика. 2007. Вып. 2. С. 5.
11. Кириллов П.Л., Лисичкин Ю.В., Новиков А.Г. О структуре воды в области сверхкритических параметров // Х Росс. конф. по теплофизическим свойствам веществ (Х РКТС). Тез. докл. Казань: КГТУ, 2002. С. Х
12. Иванов Д.Ю. Критическое поведение неидеализированных систем. М.: Физматлит, 2003. 248 C.
13. Чайкина Ю.А. Развитие локальных конечных флуктуаций плотности, коллективной скорости и температуры в реальных флюидах // Сверхкритические флюиды: теория и практика. 2012. Том 7. № 1, С. 47-63.
1. S.B. Rutin, P.V. Skripov. Apparatus for studying heat transfer in nanofluids under high-power heating // J. Eng. Thermophys. 2012. V. 21, № 2. Р. 144-153.
2. S.B. Rutin, P.V. Skripov. Heat Transfer in Supercritical Fluids under Pulse Heating Regime // Int. J. Heat Mass Transfer. 2013. V. 57, № 1. Р. 126-130.
3. С.Б. Рютин, П.В. Скрипов. Теплоперенос при сверхкритических параметрах импульсно нагреваемой жидкости // Сверхкритические флюиды: теория и практика. 2013. Т. 8, № 1. С. 87-97.
4. S.B. Rutin, P.V. Skripov. Investigation of not fully stable fluids by the method of controlled pulse heating. 1. Experimental approach // Thermochimica Acta. 2013. V. 562. Р. 70-74.
5. S.B. Rutin, A.A. Smotritskiy, A.A. Starostin, Yu.S. Okulovsky, P.V. Skripov. Heat Transfer under High-Power Heating of Liquids. 1. Experiment and Inverse Algorithm // Int. J. Heat Mass Transfer. 2013. V. 62. Р. 135-141.
6. S.B. Rutin, P.V. Skripov. Heat transfer under high-power heating of liquids. 2. Transition from compressed to supercritical water // Int. J. Heat Mass Transfer. 2014. V. 79. Р. 526-531.
7. С.Б. Рютин, А.Д. Ямпольский, П.В. Скрипов. Теплоперенос в сверхкритической воде при импульсном изобарном нагреве // Теплофизика высоких температур. 2014. Т 52, № 3. С. 481-484.
Патент на полезную модель:
1. П.В. Скрипов, С.Б. Рютин Устройство электронного управления мощностью нагревателя. Патент на полезную модель № 92728. Россия. G01N 25/00. Опубл. 27.03.2010. Бюл. № 9.
Методика ГСССД:
1. С.Б. Рютин, П.В. Скрипов. Методика экспериментального сопоставления теплового сопротивления наножидкостей в широкой области изменения температуры // Методика ГСССД МЭ 195-2012.
Другие публикации:
1. С.Б. Рютин, А.А. Смотрицкий, П.В. Скрипов. Метод постоянной мощности для исследования теплофизических свойств нанофлюидов. Сборник трудов 2-й научно-практ. конф. с международ. участием «Наноматериалы и технологии». Улан-Удэ: БГУ, 2009. С. 107-110.
2. Е.Г. Калинина, В.С. Рютин, С.Б. Рютин, А.П. Сафронов, П.В. Скрипов. Перенос тепла нанофлюидами при импульсном тепловыделении // Тр. Всеросс. конф. XXIX Сибирский теплофизический семинар (СТС). Новосибирск: ИТФ СО РАН, 2010. Компакт-диск. 9 с.
3. С.Б. Рютин, П.В. Скрипов. Перспективы применения наножидкостей в качестве рабочих тел термонапряженных процессов // Зб1рник наукових праць VIII М1жнародно! наук.-техн. конф. Одеса: ОДАХ, 2012. С. 453-456.