Актуальность работы. Будущее атомной энергетики в России неразрывно связано с вводом в эксплуатацию энергетических реакторов на быстрых нейтронах и разработкой методов пирохимической переработки маловыдержанного высокооблученного отработавшего ядерного топлива (ОЯТ), а также фракционирования ядерных отходов. Заданный вектор развития атомной промышленности позволит решить ряд важнейших задач: 1) нераспространение потоков ядерных материалов (обогащенного урана и плутония); 2) вовлечение в ядерный топливный цикл (ЯТЦ) высокоактивных минорных актинидов (МА) и нептуния; 3) замыкание ЯТЦ.
Обращение с маловыдержанным ОЯТ требует применения неводных методов его переработки, например, в системах «расплавленная соль - жидкий металл». Настоящая работа посвящена поиску перспективных жидкометаллических сред для пирохимической переработки ОЯТ реакторов на быстрых нейтронах, которые могут использоваться в пирохимической технологии переработки ОЯТ в расплавах солей и металлов, позволяющих замкнуть ЯТЦ, тем самым решить актуальную проблему атомной энергетики.
Известно, что системы «солевой расплав - жидкий металлический сплав» являются наиболее подходящими для переработки высокоактивного маловыдержанного топлива реакторов на быстрых нейтронах. В качестве жидкометаллических сред наиболее перспективными являются как легкоплавкие индивидуальные металлы 111А - УА подгрупп периодической таблицы, так и их сплавы [1]. Достоинствами таких систем являются термическая и радиационная устойчивость, жидкотекучее состояние легкоплавких металлов и их сплавов, позволяющие проводить в расплавленных средах физико-химические процессы при пониженных температурах в интервале 573-823 К.
Диссертационная работа выполнена в рамках реализации ФЦП «Ядерные энерготехнологии нового поколения» - проект «Прорыв» в рамках государственных контрактов Н.4х.46.90.11.1158, Н.4х.45.90.11.1097 и Н.4х.44.90.13.1096; ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 годы», а также при финансовой поддержке фонда молодых ученых УрФУ в рамках реализации программы развития УрФУ.
Степень разработанности темы исследования. Разделение лантанидов и актинидов пирохимическими методами в системах «солевой расплав - жидкий металл» привлекает пристальное внимание ученых, работающих в России, США, ФРГ, Франции, Японии и других странах, начиная с 60-х годов прошлого века по настоящее время. Лучше всего изучены и разработаны процессы разделения 4/- и 5/-элементов при использовании жидкого кадмия в качестве металлического расплава. Однако, применение жидкого кадмия в одностадийных процессах переработки ОЯТ не позволяет достичь высоких значений коэффициентов разделения (КР) близких по свойствам 4/- и 5/-элементов. Достигаемые значения КР при межгрупповом разделении актинидов и лантанидов на кадмии не превышают 103 [2].
Исследования, посвященные разделению /-металлов на жидком галлии, к настоящему времени единичны [3, 4] и проводились только при повышенных температурах 773-1073 К (КР ~ 100). Упоминаний где-либо о возможности применения эвтектических сплавов на основе галлия в пирохимических технологиях переработки ОЯТ нами не обнаружено.
Важной и необходимой предпосылкой для разработки пирохимических технологий переработки ОЯТ, фракционирования ядерных отходов и получения «чистого топлива» является термодинамическое обоснование целесообразности разделения продуктов деления и делящихся материалов в системах «солевой расплав - жидкий металлический сплав». Сведения о термодинамических свойствах лантанидов и актинидов в жидкометаллических эвтектических сплавах Оа-1п и Оа-Зп в отечественной и зарубежной литературе отсутствовали. Это не позволяет оценить возможность использования данных сплавов в пирохимических технологиях переработки ОЯТ, а также фракционирования ядерных отходов.
Цель работы состояла в изучении процессов разделения некоторых продуктов деления (Рг, ЫР) и делящихся материалов (Ц) на биметаллических жидких сплавах Оа-1п и Оа-Зп в системе «хлоридный расплав - жидкий металл».
Для достижения поставленной цели были поставлены и реализованы следующие
задачи:
1) найти, систематизировать и обобщить сведения о термодинамических характеристиках некоторых редкоземельных металлов (РЗМ) (Рг, N3 ) и урана в сплавах с легкоплавкими металлами (Оа, 1п, Зп, Б1);
2) получить температурные зависимости активности, коэффициентов активности, растворимости празеодима и неодима в эвтектических сплавах галлий-индий и галлий-олово; рассчитать термодинамические функции празеодима и неодима в изученных сплавах; экспериментально проверить значения термодинамических функций РЗМ в жидких галлии, индии и висмуте и сравнить с данными других исследователей;
3) на примере неодима установить влияние концентрации второго легкоплавкого металла в сплавах Оа-1п на растворимость в них лантанидов;
4) по термодинамическим данным рассчитать коэффициенты разделения неодима и празеодима, неодима и урана на эвтектических сплавах Оа-1п и Оа-Зп и рекомендовать наиболее перспективный сплав для эффективного разделения /-элементов в одностадийном процессе;
5) экспериментально проверить возможность внутригруппового (Рг/ЫР) и межгруппового (ЫБ/Ц) разделения /-элементов в расплавах солей и металлов.
Научная новизна работы заключается в следующем:
1. Температурные зависимости активности, коэффициентов активности, растворимости празеодима и неодима в расплавах Оа-1п и Оа-Зп эвтектического состава в интервале 573-1073 К получены впервые. Определены изменения парциальных и избыточных парциальных энтальпии, энтропии, энергии Гиббса празеодима и неодима в двухфазных и гомогенных эвтектических сплавах Оа-1п и Оа-Зп. В интервале 573-1073 К уточнены термодинамические функции празеодима и неодима в двухфазных (Ж+ИМС) сплавах с индием и висмутом.
2. Впервые изучено влияние концентрации индия в сплавах Оа-1п, содержащих 21,4; 40,0 и 70,0 мас.% 1п, на растворимость редкоземельных металлов (на примере неодима) в интервале 427-973 К. Обнаружено, что в исследованном температурном интервале растворимость неодима в галлий-индиевых сплавах не описывается линейной зависимостью 1дХ = /(1/Т) и закономерно уменьшается с увеличением доли индия в сплавах Оа-1п.
3. На основании полученных и имеющихся в литературе термодинамических данных рассчитаны значения коэффициентов разделения пар элементов «ЫРРг». «сШ» на эвтектических сплавах Оа-1п и Оа-Зп. Проведена верификация КР этих пар элементов в системе «хлоридный солевой расплав - жидкий эвтектический сплав Оа-Зп». Доказано. что на обоих эвтектических сплавах внутригрупповое разделение 4/-элементов (Рг и ЫР) невозможно. Тогда как межгрупповое разделение 4/- и 5/- элементов (ЫР и Ц) на эвтектическом сплаве Оа-Зп проходит весьма результативно с КР ~ 105 - 106.
Теоретическая и практическая значимость. Теоретическая значимость работы заключается в получении фундаментальных данных о термодинамических свойствах лантанидов цериевой подгруппы (Рг, ЫР ) в бинарных сплавах Оа-1п и Оа-Зп. в формировании адекватной модели поведения некоторых компонентов ОЯТ (на примере Рг. ЫР. Ц) в солевых хлоридных расплавах на жидкометаллических подложках.
Практическая значимость заключается в экспериментальной проверке и подтверждении целесообразности извлечения делящихся материалов галлийсодержащими жидкометаллическими сплавами из солевых хлоридных расплавов. Достигнутые значения КР ~ 105 - 106 позволяют обеспечить практически полное межгрупповое разделение 4/- и 5/-элементов в одностадийном процессе.
Методология и методы исследования. Активность празеодима и неодима в сплавах определяли методом электродвижущих сил (ЭДС) с использованием современного оборудования: универсального потенциостата/гальваностата Ли!о1аЬ РОЗ1а1 302Ы и прецизионного вольтметра Актаком АМ-1038. Растворимость РЗМ в галлийсодержащих сплавах определяли методом высокотемпературного отбора проб после длительного изотермического отстаивания в комбинации с методом высокотемпературной фильтрации. Верификацию внутригруппового разделения (Рг и ЫР) и межгруппового разделения (ЫР и Ц) /-элементов в системе «солевой хлоридный расплав - галлиевый эвтектический сплав» проводили методом восстановительной экстракции по обменной реакции (в качестве восстановителя использовали более электроотрицательный металл в паре разделяемых элементов). Исследования шлифов кристаллов интерметаллических соединений (ИМС) проводили на оптическом микроскопе Olympus GX71в комплекте с встроенной цифровой видеокамерой. Рентгенофазовый анализ ИМС проводили на дифрактометре PANanalytical XPERT PRO MPD.Химический состав сплавов контролировали на масс-спектрометре ELAN 9000.
Научные положения, выносимые на защиту:
1. Результаты определения термодинамических функций празеодима и неодима в сплавах с галлием, индием, висмутом, эвтектическими композициями галлий-индий и галлий-олово; сопоставление с данными других исследователей и анализ полученных данных.
2. Результаты определения растворимости неодима в бинарных сплавах Ga-In,содержащих 21,4; 40,0 и 70,0 мас.% индия, в интервале 324-1073 K; сведения о составе интерметаллических соединений, равновесных с изученными расплавами. Выводы о характере межчастичного взаимодействия празеодима и неодима с компонентами сплавов Ga-Inи Ga-Sn.
3. Расчет значений КР пар химических элементов «Nd/Pr»и «Nd/U» на эвтектических сплавах Ga-Inи Ga-Snв хлоридных расплавах и результаты верификации коэффициентов разделения.
Степень достоверности и апробация результатов. Полученные в диссертации температурные зависимости термодинамических характеристик празеодима и неодима в сплавах с легкоплавкими металлами хорошо согласуются с данными, найденными другими авторами в более узких температурных интервалах. Исследования проводили с использованием современного лабораторного оборудования в инертной атмосфере. Результаты измерений термодинамических величин, коэффициентов разделения, рентгенофазовых исследований получены на современном поверенном оборудовании. Они хорошо воспроизводимы и статистически достоверны. Элементный контроль сплавов проводили в аккредитованной лаборатории «Аналитический испытательный центр - Российская арбитражная лаборатория испытаний материалов ядерной энергетики», г. Екатеринбург.
Основные результаты диссертационной работы были представлены и обсуждены на следующих научных конференциях: 1) «222nd Meeting of the Electrochemical Society»,7-12 октября 2012 г., Гонолулу, США; 2) «NuMat2012: The Nuclear Materials Conference», 22-25 октября 2012 г., Осака, Япония; 3) XVI Российская конференция (с международным участием) «Физическая химия и электрохимия расплавленных и твердых электролитов», 16-20 сентября 2013 г., Екатеринбург, Россия; 4) «44th Journées des Actinides», 24-28 апреля 2014 г., Эйн- Геди, Израиль; 5) II Международная конференция «Исследования основных направлений технических и физико-математических наук», 10 мая 2014 г ., Волгоград, Россия; 6) «226th Meeting of the Electrochemical Society»,5-9 октября 2014 г., Канкун, Мексика; 7) «NuMat2014: The Nuclear Materials Conference», 27-30 октября 2014 г., Клеаруотер Бич, США; 8) «1st SACSESS International Workshop»,22-24 апреля 2015 г., Варшава, Польша.
Личный вклад автора. Постановка задач исследования, проектирование и изготовление экспериментальных ячеек, модернизация и обслуживание лабораторных стендов, планирование и проведение экспериментов, обработка, анализ и интерпретация полученных данных, подготовка текстов устных и стендовых докладов, написание научных статей на русском и английском языках проведены совместно с научным руководителем и соавторами.
Публикации. По теме диссертации опубликовано 15 работ, из них в научных журналах, входящих в перечень ВАК и представленных в базах цитирования РИНЦ - 5 статей; в иностранных журналах, представленных в базах цитирования Scopusи Web of Science- 6 статей. В прочих изданиях опубликованы тезисы 4-х докладов.
Структура и объем диссертации. Диссертационная работа состоит из введения, пяти глав, заключения, списка сокращений и условных обозначений, списка литературы, включающего 85 библиографических записей. Работа изложена на 167 страницах, содержит 53 рисунка, 21 таблицу, 1 приложение.
1. Независимыми методами впервые определены температурные зависимости активности, коэффициентов активности и растворимости празеодима и неодима в эвтектических расплавах Оа-1п и Оа-Зп в интервале 429-1073 К. Рассчитаны термодинамические характеристики празеодима и неодима в двухфазных и гомогенных эвтектических расплавах. Уточнены термодинамические функции празеодима и неодима в двухфазных сплавах с индием и висмутом, а также растворимость неодима в галлии и индии. Обобщены и систематизированы сведения о термодинамических характеристиках празеодима, неодима и урана в сплавах с галлием, индием, оловом и висмутом.
2. В интервале температур 427-1073 К независимыми экспериментальными методами впервые определена растворимость неодима в сплавах Оа-1п, содержащих 21,4; 40,0 и 70,0 мас.% 1п. Доказано закономерное существенное уменьшение растворимости неодима в двойных сплавах Оа-1п с увеличением в них массовой доли индия, которое особенно проявляется в области температур ниже 600 К. Установлено, что в жидких сплавах Оа-1п и Оа-Зп идет преимущественное взаимодействие празеодима и неодима с галлием. Индий и олово в сплавах участвуют, возможно, как синергетические добавки, увеличивающие коэффициенты межгруппового разделения актинидов и лантанидов.
3. По термодинамическим данным в интервале 723-823 К рассчитаны коэффициенты разделения пар химических элементов «Ш/Рг» и «N3 0» на эвтектических жидкометаллических сплавах Оа-Зп в эвтектических хлоридных расплавах. Экспериментальные значения коэффициентов разделения элементов «Ы3/Рг» на эвтектическом сплаве Оа-Зп в хлоридных расплавах при температурах 723, 773 и 823 К согласуются с результатами термодинамических расчетов. Это подтверждает надежность полученных в диссертационной работе термодинамических данных.
4. Экспериментально доказано, что разделение празеодима и неодима в хлоридных расплавах на жидкометаллических сплавах Оа-1п и Оа-Зп неэффективно (КР ~ 1). В тоже время, уран и неодим можно разделить на эвтектических сплавах Оа-Зп с очень высоким коэффициентом разделения (КР ~ 105 - 106). Рассматривая неодим (празеодим) как имитатор лантанидов, а уран как имитатор делящихся материалов (ДМ) (О, Ри, Ыр), следует ожидать, что в реальной пирохимической технологии переработки ОЯТ при достигнутых КР ~ 106 можно будет селективно отделить ДМ от весьма близких по свойствам 21 лантанидов в одну стадию и, тем самым, обеспечить возврат ДМ в ядерный топливный цикл, т.е. достичь показатели, заложенные программой «Прорыв».
5. Эвтектические сплавы Оа-Зп являются более перспективными для пирохимической технологии переработки ОЯТ реакторов на быстрых нейтронах в расплавленных средах, так как КР на них выше, чем на расплавах Оа-1п.
1. Мельчаков, С. Ю. Избыточные термодинамические характеристики празеодима в расплаве галлия с индием / С.Ю. Мельчаков, Л.Ф. Ямщиков, В. А. Иванов, В. А. Волкович, А.Г. Осипенко, М.В. Кормилицын, В. А. Наговицын // Расплавы. - 2013. - № 3. - С. 83-86 (0,36 п.л./0,14 п.л.).
2. Мельчаков, С. Ю. Растворимость и избыточные термодинамические характеристики Рг и N6 в эвтектическом сплаве Оа-8п / С.Ю. Мельчаков, Л.Ф. Ямщиков, А.Г. Осипенко, П.А. Поздеев, М.А. Русаков // Расплавы. - 2014. - № 5. - С. 7-12 (0,54 п.л./0,24 п.л.).
3. Мельчаков, С. Ю. Термодинамические характеристики сплавов празеодима с эвтектическим расплавом Оа-1п / С.Ю. Мельчаков, Л.Ф. Ямщиков, В.А. Иванов, В.А. Волкович, С.П. Распопин, А.Г. Осипенко // Известия вузов. Цветная металлургия. - 2014. - № 5. - С. 24-28 (0,50 п.л./0,32 п.л.).
4. Мельчаков, С. Ю. Активность празеодима и неодима в сплавах с индием, висмутом и в эвтектическом расплаве галлий-олово / С.Ю. Мельчаков, Л.Ф. Ямщиков, П.А. Поздеев, М.В. Кормилицын, А.Г. Осипенко // Расплавы. - 2014. - № 6. - С. 18-27 (0,75 п.л./0,34 п.л.).
5. Мельчаков, С. Ю. Растворимость неодима в жидких галлии, индии и металлических композициях на их основе / С.Ю. Мельчаков, Л.Ф. Ямщиков, А.Г. Осипенко, М.А. Русаков // Расплавы. - 2014. - № 6. - С. 41-49 (0,67 п.л./0,37 п.л.).
Статьи в журналах, входящих в базы цитирования Scopus и Web of Science:
6. Dedyukhin, A. S. Activity coefficients and solubility of lanthanum and praseodymium in gallium-indium eutectic alloy / A.S. Dedyukhin, V.A. Ivanov, S.Yu. Melchakov, A.V. Shchetinskii, V.A. Volkovich, L.F. Yamshchikov, A.G. Osipenko, S.P. Raspopin, M.V. Kormilitsyn // ECS Transactions. - 2012. - Vol. 50, No. 11. - P. 507-515 (0,52 п.л./0,09 п.л.).
7. Melchakov, S. Yu. Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy / S.Yu. Melchakov, V.A. Ivanov, L.F. Yamshchikov, V.A. Volkovich, A.G. Osipenko, M.V. Kormilitsyn // Journal of Nuclear Materials. - 2013. - Vol. 437. - P. 66-69 (0,50 п.л./0,13 п.л.).
8. Volkovich, V. A. Thermodynamic properties of uranium in Ga-In based alloys / V.A. Volkovich, D.S. Maltsev, L.F. Yamshchikov, S.Yu Melchakov, A.V. Shchetinskiy, A.G. Osipenko, M.V. Kormilitsyn // Journal of Nuclear Materials. - 2013. - Vol. 438. - P. 94-98 (0,83 п.л./0,17 п.л.).
9. Mel’chakov, S. Yu. Excessive Thermodynamic Properties of Praseodymium in a Gallium-Indium Alloy / S.Yu. Mel’chakov, L.F. Yamshchikov, V.A. Ivanov, V.A. Volkovich, A.G. Osipenko, M.V. Kormilitsyn, V.A. Nagovitsyn // Russian Metallurgy (Metally). - 2013. - Vol. 2013, No. 8. - P. 607-609 (0,50 п.л./0,13 п.л.).
10. Melchakov, S. Yu. Separation of Uranium and Lanthanides in a Fused Salt - Liquid Gallium Based Alloy System / S.Yu. Melchakov, D.S. Maltsev, V.A.Volkovich, L.F. Yamshchikov, A.G. Osipenko // ECS Transactions. - 2014. - Vol. 64, No. 4. - P. 369-375 (0,35 п.л./0,09 п.л.).
11. Melchakov, S. Yu. Thermodynamic Properties of Alloys of Praseodymium with the Gallium-Indium Eutectic Melt / S.Yu. Melchakov, L.F. Yamshchikov, V.A. Ivanov, V.A. Volkovich, S.P. Raspopin, A.G. Osipenko // Russian Journal of Non-Ferrous Metals. - 2014. - Vol. 55, No. 6. - P. 550-553 (0,38 п.л./0,13 п.л.).
Другие публикации:
12. Мельчаков, С. Ю. Расчет коэффициентов разделения лантана и празеодима на галлиевых, индиевых и эвтектических галлий-индиевых сплавах в расплаве 3LiCl-2KCl/ С.Ю. Мельчаков, Л.Ф. Ямщиков, В. А. Иванов, А.В. Щетинский, В. А. Волкович, М.А. Русаков, А.Г. Осипенко, М.В. Кормилицын. // Физическая химия и электрохимия расплавленных и твердых электролитов : Материалы XVI Рос. конф. (с международ. участием). - Екатеринбург: Изд-во Уральского ун-та, 2013. - Т.1. - С. 202-205 (0,23 п.л./ 0,11 п.л.).
13. Ямщиков, Л. Ф. Термодинамические свойства редкоземельных элементов и урана в жидкометаллических сплавах на основе эвтектической смеси галлия и индия / Л.Ф. Ямщиков, В.А. Волкович, В.А. Иванов, А.В. Щетинский, А.С. Дедюхин, Д.С. Мальцев, С.Ю. Мельчаков, А.Г. Осипенко, М.В. Кормилицын // Физическая химия и электрохимия расплавленных и твердых электролитов : Материалы XVI Рос. конф. (с международ. участием). - Екатеринбург: Изд-во Уральского ун-та, 2013. - Т.1 - С. 406-409 (0,18 п.л./0,02 п.л.).
14. Мельчаков, С. Ю. Коэффициенты разделения урана и лантанидов (Pr, Nd) в системе «расплав LiCl-KCl-CsCl- жидкий галлий, индий или их эвтектический сплав» / С.Ю. Мельчаков, Д.С. Мальцев, В.А. Волкович, Л.Ф. Ямщиков, А.Г. Осипенко, М.А. Русаков // Исследования основных направлений технических и физико-математических наук : Материалы II Международной конф. - Волгоград: Изд-во Научное обозрение, 2014. - С. 52-55 (0,18 п.л./0,09 п.л.).
15. Melchakov, S. Yu. Séparation factors of U and Pr or Nd in LiCl-KCl-CsCl melt - liquid gallium, indium or gallium-indium eutectic alloy system / S.Yu. Melchakov, D.S. Maltsev, V.A. Volkovich, L.F. Yamshchikov, A.G. Osipenko, M.V. Kormilitsyn // Abstracts of «44th Journees des Actinides and 10th SPCA». - Ein-Gedi, 2014. - P. 126-127 (0,08 п.л./0,04 п.л.).
Список использованных источников
1. Лебедев, В. А. Избирательность жидкометаллических электродов в расплавленных галогенидах / В. А. Лебедев. - Челябинск : Металлургия, 1993. - 232 с.
2. Васин, Б. Д. Неводные методы переработки облученного ядерного топлива: учебное пособие / Б. Д. Васин, В. А. Волкович. - Екатеринбург: Изд-во УГТУ-УПИ, 2009. - 79 с.
3. Toda, T. Separation factor of americium from cerium in molten chloride - liquid gallium reductive extraction system / T. Toda, T. Maruyama, K. Moritani, H. Moriyama, H. Hayashi // Electrochemistry. - 2009. - Vol. 77, No. 8. - P. 649-651.
4. Lambertin, D. Activity coefficients of plutonium and cerium in liquid gallium at 1073 K: application to a molten salt/solvent metal separation concept / D. Lambertin, S. Chedhomme, G. Bourges, S. Sanchez, G. S. Picard // Journal of nuclear materials. - 2005. - Vol. 341 - P. 131-140.
5. От Научного совета по химической термодинамике и термохимии // Журнал физической химии. - 1972. - Т. 46, № 11. - С. 2975-2986.
6. Лебедев, В. А. Термохимия сплавов редкоземельных и актиноидных элементов : справ. изд. / В. А. Лебедев, В. И. Кобер, Л. Ф. Ямщиков - Челябинск : Металлургия, 1989. - 336 с.
7. Smolenski, V. Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases / V. Smolenski, A. Novoselova, A. Osipenko, M. Kormilitsyn, Ya. Luk’yanova // Electrochimica Acta. - 2014. - Vol. 133. - P. 354-358.