МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВОССТАНОВЛЕНИЕ МЕЖЧАСТИЧНЫХ ПОТЕНЦИАЛОВ UO2–PuO2 С ИСПОЛЬЗОВАНИЕМ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ
|
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ
Актуальность исследования
Проектирование конструкционных материалов эффективных и безопасных ядерных реакторов немыслимо без высокоскоростного компьютерного моделирования. Один из самых нагруженных участков современного реактора - тепловыделяющие элементы (ТВЭЛ), которые изготовляются на основе актинид- оксидных (АО) соединений: UO2(более 95% всех ТВЭЛов), PuO2и ThO2. Большой интерес также вызывает смешанное (MOX) оксидное топливо в связи с программами нераспространения и переработки оружейного плутония Pu-239.
Для прогнозирования поведения ядерного топлива в процессах изготовления, эксплуатации и утилизации необходимы исследования на микроскопическом уровне. Учитывая опасность ситуаций «потери охлаждения», при которых происходит плавление топлива - его технологические характеристики приобретают первостепенную важность. Получение экспериментальных данных при высоких температурах (~3000 K), давлениях (~1-10 ГПа) и уровнях радиации крайне затруднено, поэтому важным источником информации в таких экстремальных условиях является моделирование методом молекулярной динамики (МД).
Расчет сложной электронной структуры актинидов очень ресурсоемок, поэтому МД-моделирование их оксидов обычно проводится в приближениях точечных частиц и парных взаимодействий, которые допускают эффективное использование параллельных вычислений. При этом все структурные и транспортные свойства модели полностью определяются выбранным набором парных потенциалов (НИИ).
Значения параметров НИИ можно восстанавливать из первых принципов (ab initio) или эмпирически по известным экспериментальным данным. Первопринципные расчеты оксидов актинидов в настоящее время проводятся в приближении теории функционала плотности [1] [2] без динамики частиц и, следовательно, без учета ангармонических эффектов и кинетических свойств системы, что не позволяет исследовать температурные зависимости величин.
В то же время, адекватность эмпирической параметризации НПП улучшается параллельно с развитием вычислительных средств и уточнением экспериментальных данных: от простейших аналитических расчетов энергии связи, диэлектрических, упругих свойств и фононных спектров в гармоническом приближении; к расчетам энергий образования точечных дефектов методом статики решетки; и, наконец, к самосогласованному МД-моделированию температурных зависимостей с учетом кинетических и ангармонических эффектов [3-20].
Несмотря на значительный прогресс, до сих пор не удалось подобрать универсальную модель парных потенциалов, одновременно воспроизводящую диффузионные и теплофизические свойства оксидов актинидов.
Цель работы
Создание молекулярно-динамической модели ионных кристаллов диоксидов урана (иО2), плутония (РиО2) и их МОХ-смеси вида (и, Ри)О2, обеспечивающей количественную точность расчета теплофизических и диффузионных свойств в широком диапазоне температур от комнатной до плавления.
Этапы работы
• Разработка параллельной реализации численного метода молекулярной динамики с использованием быстродействующих графических процессоров.
• Разработка метода параметризации эмпирических межчастичных потенциалов, позволяющего напрямую учесть кинетические и ангармонические эффекты.
• Восстановление универсального набора парных потенциалов для физического моделирования иО2, РиО2 и (и, Ри)О2.
• Исследование теплофизических и диффузионных свойств этих соединений, а также суперионного фазового перехода и плавления.
Научная новизна
• Разработана линейно-масштабируемая реализация МД с распараллеливанием по системам и интегрированием уравнений движения на графических процессорах, дающая ускорение на 2-3 порядка по сравнению со скалярной реализацией на центральном процессоре.
• Разработан самосогласованный метод МД-параметризации эмпирических межчастичных потенциалов по экспериментальным данным о тепловом расширении. Впервые реализована «изохорная» оптимизация по давлению, на 1¬2 порядка более быстрая по сравнению с «изобарной» оптимизацией по объему.
• Восстановлен универсальный набор потенциалов для диоксидов урана и плутония, а также их МОХ-смеси, количественно воспроизводящий как теплофизические, так и диффузионные экспериментальные данные.
• Время МД-моделирования увеличено на 4 порядка (до 1000 нс вместо 0.1 нс), что обеспечило широкий диапазон измерений коэффициентов самодиффузии анионов (от 10-3 см2/с при плавлении до 10-11 см2/с при 1400 К) и позволило напрямую (без экстраполяций) сравнить их с низкотемпературными (Т < 1500 К) экспериментальными данными.
• Точность измерения всех температурных зависимостей увеличена на 2 порядка (шаг 1 К вместо 100 К, использованного в предыдущих работах), что позволило надежно определить их производные (в частности, Х-пики), а также типы и характеристики фазовых переходов.
• Исследована зависимость модели от размера системы (96-12000 ионов), граничных условий (периодические и нулевые) и межчастичных потенциалов (рассмотрены 10 НИИ для ИО2 и 3 для РиО2).
• Показано, что даже при отсутствии электронных и катионных дефектов в ИО2 и РиО2 существует континуальный суперионный фазовый переход (постепенное разупорядочение анионной подрешетки), который проявляется на температурных зависимостях коэффициента линейного расширения и теплоемкости в виде широких (порядка 1000 К) Х-пиков конечной высоты. Это отличается от предполагавшегося ранее скачкообразного перехода первого или второго рода с узким (порядка 50 К) Х-пиком бесконечной высоты. Впервые исследована зависимость характеристик Х-пика от давления, показано, что в диапазоне от -5 до 5 ГИа его температура меняется линейно, а высота - параболически.
• Показано, что температурная зависимость коэффициента самодиффузии анионов в аррениусовых координатах (1и0 от 1/кТ) имеет вид гиперболы с двумя асимптотами для кристаллической и суперионной фаз. Это соответствует 8- образной температурной зависимости энергии активации диффузии с двумя плато и широкой (порядка 1000 К) переходной областью между ними, причем график ее производной имеет Х-пик при той же температуре, что и Х-пик теплоемкости.
• Иоказано, что в модельных периодических кристаллах (без поверхностей и полостей) не образуется долгоживущих собственных дефектов, поэтому во всем исследованном диапазоне температур доминирует обменная диффузия при отсутствии междоузельной и вакансионной , причем ее энергия активации в кристаллической фазе совпадает с энергией образования дефектов Френкеля.
Практическая значимость
• Разработанная технология высокоскоростной молекулярной динамики на графических процессорах и соответствующий комплекс программ могут быть использованы для моделирования широкого круга физических систем.
• Разработанный метод восстановления эмпирических межчастичных потенциалов пригоден для любых ионных соединений.
• Иредложенный универсальный НИИ количественно воспроизводит как теплофизические, так и диффузионные свойства ИО2, РиО2 и (и, Ри)О2.
• Детализированные температурные зависимости теплофизических и диффузионных характеристик (периода решетки, энтальпии, объемного модуля упругости, изохорной и изобарной теплоемкостей, коэффициента линейного расширения, коэффициента самодиффузии и энергии активации анионов) могут быть использованы при анализе опытных данных, планировании новых экспериментов, а также для прогнозирования поведения ядерного топлива в экстремальных условиях.
Автор защищает
• Линейно-масштабируемую реализацию МД с распараллеливанием по системам и интегрированием уравнений движения на графических процессорах.
• Метод экономичной «изохорной» МД-параметризации межчастичных потенциалов по экспериментальным данным о тепловом расширении.
• Параметры универсального НИИ для моделирования ИО2, РиО2 и (И, Ри)О2.
• Температурные зависимости теплофизических и диффузионных характеристик, полученные для бездефектных квазибесконечных кристаллов ИО2 и РиО2.
• Вывод об анионном механизме континуального суперионного перехода в ИО2 и РиО2, который характеризуется большой (порядка 1000 К) шириной и конечной высотой Х-пиков теплоемкости и коэффициента линейного расширения.
• Вывод о доминировании обменного механизма самодиффузии в кристаллической фазе при отсутствии поверхности и искусственных дефектов.
Личный вклад автора. Основные результаты диссертации получены автором лично. Комплекс программ для МД-моделирования на графических процессорах разработан совместно с Боярченковым Антоном Сергеевичем.
Достоверность полученных результатов обеспечивается хорошим (во многих случаях - количественным) совпадением свойств разработанной модели с экспериментальными данными, а также сравнением в работе десяти наиболее актуальных наборов межчастичных потенциалов, предложенных различными авторами, по широкому спектру теплофизических и диффузионных характеристик.
Апробация. Материалы диссертации представлялись и докладывались на следующих конференциях и семинарах.
• Всероссийская научно-практическая конференция с международным участием «Ядерная, радиационная безопасность и нераспространение» - ЯРБН (НТИ НИЯУ МИФИ, Новоуральск, 2010).
• XII, XIII, XIV Национальные конференции по росту кристаллов - НКРК (Институт кристаллографии РАН, Москва, 2006, 2008, 2010).
• VII, VIII, IX Всероссийские конференции по реакторному материаловедению - РМ (НИИАР, Димитровград, 2003, 2007, 2009).
• Всероссийская конференция «Химия твердого тела и функциональные материалы - 2004» (Институт химии твердого тела УрО РАН, Екатеринбург, 2004).
• IV всероссийский семинар СО РАН - УрО РАН «Термодинамика и материаловедение» (Институт химии твердого тела УрО РАН, Екатеринбург, 2004).
• Всероссийский отраслевой семинар «Вопросы создания новых методик исследований и испытаний, сличительных экспериментов, аттестации и аккредитации» (НИИАР, Димитровград, 2005).
• 1-й и 2-й Всероссийский отраслевой семинар «Физическое моделирование изменения свойств реакторных материалов в номинальных и аварийных условиях» (НИИАР, Димитровград, 2006, 2008).
Публикации. По материалам диссертации опубликовано 30 печатных работ, в том числе 6 статей в рецензируемых журналах из списка ВАК: «Journal of Nuclear Materials», «Вычислительные методы и программирование», «Альтернативная энергетика и экология», «Вестник УГТУ-УПИ».
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, библиографии из 158 наименований и содержит 133 страницы, 40 рисунков, 16 таблиц.
Автор выражает благодарность: своей супруге Маткиной М.А., научному руководителю профессору, д.ф.-м.н. Купряжкину А.Я., коллегам по научной группе Боярченкову А.С., Некрасову К.А., Коваленко М.А., Рисованому Д.В., Жиганову А.Н., Здобнухиной Н.В., Коромыслову А.В., всему коллективу кафедры технической физики Уральского федерального университета; и посвящает эту работу памяти своих родителей Поташниковой О.Н. (1956-2006), Поташникову И.Ш. (1955-2009).
Проектирование конструкционных материалов эффективных и безопасных ядерных реакторов немыслимо без высокоскоростного компьютерного моделирования. Один из самых нагруженных участков современного реактора - тепловыделяющие элементы (ТВЭЛ), которые изготовляются на основе актинид- оксидных (АО) соединений: UO2(более 95% всех ТВЭЛов), PuO2и ThO2. Большой интерес также вызывает смешанное (MOX) оксидное топливо в связи с программами нераспространения и переработки оружейного плутония Pu-239.
Для прогнозирования поведения ядерного топлива в процессах изготовления, эксплуатации и утилизации необходимы исследования на микроскопическом уровне. Учитывая опасность ситуаций «потери охлаждения», при которых происходит плавление топлива - его технологические характеристики приобретают первостепенную важность. Получение экспериментальных данных при высоких температурах (~3000 K), давлениях (~1-10 ГПа) и уровнях радиации крайне затруднено, поэтому важным источником информации в таких экстремальных условиях является моделирование методом молекулярной динамики (МД).
Расчет сложной электронной структуры актинидов очень ресурсоемок, поэтому МД-моделирование их оксидов обычно проводится в приближениях точечных частиц и парных взаимодействий, которые допускают эффективное использование параллельных вычислений. При этом все структурные и транспортные свойства модели полностью определяются выбранным набором парных потенциалов (НИИ).
Значения параметров НИИ можно восстанавливать из первых принципов (ab initio) или эмпирически по известным экспериментальным данным. Первопринципные расчеты оксидов актинидов в настоящее время проводятся в приближении теории функционала плотности [1] [2] без динамики частиц и, следовательно, без учета ангармонических эффектов и кинетических свойств системы, что не позволяет исследовать температурные зависимости величин.
В то же время, адекватность эмпирической параметризации НПП улучшается параллельно с развитием вычислительных средств и уточнением экспериментальных данных: от простейших аналитических расчетов энергии связи, диэлектрических, упругих свойств и фононных спектров в гармоническом приближении; к расчетам энергий образования точечных дефектов методом статики решетки; и, наконец, к самосогласованному МД-моделированию температурных зависимостей с учетом кинетических и ангармонических эффектов [3-20].
Несмотря на значительный прогресс, до сих пор не удалось подобрать универсальную модель парных потенциалов, одновременно воспроизводящую диффузионные и теплофизические свойства оксидов актинидов.
Цель работы
Создание молекулярно-динамической модели ионных кристаллов диоксидов урана (иО2), плутония (РиО2) и их МОХ-смеси вида (и, Ри)О2, обеспечивающей количественную точность расчета теплофизических и диффузионных свойств в широком диапазоне температур от комнатной до плавления.
Этапы работы
• Разработка параллельной реализации численного метода молекулярной динамики с использованием быстродействующих графических процессоров.
• Разработка метода параметризации эмпирических межчастичных потенциалов, позволяющего напрямую учесть кинетические и ангармонические эффекты.
• Восстановление универсального набора парных потенциалов для физического моделирования иО2, РиО2 и (и, Ри)О2.
• Исследование теплофизических и диффузионных свойств этих соединений, а также суперионного фазового перехода и плавления.
Научная новизна
• Разработана линейно-масштабируемая реализация МД с распараллеливанием по системам и интегрированием уравнений движения на графических процессорах, дающая ускорение на 2-3 порядка по сравнению со скалярной реализацией на центральном процессоре.
• Разработан самосогласованный метод МД-параметризации эмпирических межчастичных потенциалов по экспериментальным данным о тепловом расширении. Впервые реализована «изохорная» оптимизация по давлению, на 1¬2 порядка более быстрая по сравнению с «изобарной» оптимизацией по объему.
• Восстановлен универсальный набор потенциалов для диоксидов урана и плутония, а также их МОХ-смеси, количественно воспроизводящий как теплофизические, так и диффузионные экспериментальные данные.
• Время МД-моделирования увеличено на 4 порядка (до 1000 нс вместо 0.1 нс), что обеспечило широкий диапазон измерений коэффициентов самодиффузии анионов (от 10-3 см2/с при плавлении до 10-11 см2/с при 1400 К) и позволило напрямую (без экстраполяций) сравнить их с низкотемпературными (Т < 1500 К) экспериментальными данными.
• Точность измерения всех температурных зависимостей увеличена на 2 порядка (шаг 1 К вместо 100 К, использованного в предыдущих работах), что позволило надежно определить их производные (в частности, Х-пики), а также типы и характеристики фазовых переходов.
• Исследована зависимость модели от размера системы (96-12000 ионов), граничных условий (периодические и нулевые) и межчастичных потенциалов (рассмотрены 10 НИИ для ИО2 и 3 для РиО2).
• Показано, что даже при отсутствии электронных и катионных дефектов в ИО2 и РиО2 существует континуальный суперионный фазовый переход (постепенное разупорядочение анионной подрешетки), который проявляется на температурных зависимостях коэффициента линейного расширения и теплоемкости в виде широких (порядка 1000 К) Х-пиков конечной высоты. Это отличается от предполагавшегося ранее скачкообразного перехода первого или второго рода с узким (порядка 50 К) Х-пиком бесконечной высоты. Впервые исследована зависимость характеристик Х-пика от давления, показано, что в диапазоне от -5 до 5 ГИа его температура меняется линейно, а высота - параболически.
• Показано, что температурная зависимость коэффициента самодиффузии анионов в аррениусовых координатах (1и0 от 1/кТ) имеет вид гиперболы с двумя асимптотами для кристаллической и суперионной фаз. Это соответствует 8- образной температурной зависимости энергии активации диффузии с двумя плато и широкой (порядка 1000 К) переходной областью между ними, причем график ее производной имеет Х-пик при той же температуре, что и Х-пик теплоемкости.
• Иоказано, что в модельных периодических кристаллах (без поверхностей и полостей) не образуется долгоживущих собственных дефектов, поэтому во всем исследованном диапазоне температур доминирует обменная диффузия при отсутствии междоузельной и вакансионной , причем ее энергия активации в кристаллической фазе совпадает с энергией образования дефектов Френкеля.
Практическая значимость
• Разработанная технология высокоскоростной молекулярной динамики на графических процессорах и соответствующий комплекс программ могут быть использованы для моделирования широкого круга физических систем.
• Разработанный метод восстановления эмпирических межчастичных потенциалов пригоден для любых ионных соединений.
• Иредложенный универсальный НИИ количественно воспроизводит как теплофизические, так и диффузионные свойства ИО2, РиО2 и (и, Ри)О2.
• Детализированные температурные зависимости теплофизических и диффузионных характеристик (периода решетки, энтальпии, объемного модуля упругости, изохорной и изобарной теплоемкостей, коэффициента линейного расширения, коэффициента самодиффузии и энергии активации анионов) могут быть использованы при анализе опытных данных, планировании новых экспериментов, а также для прогнозирования поведения ядерного топлива в экстремальных условиях.
Автор защищает
• Линейно-масштабируемую реализацию МД с распараллеливанием по системам и интегрированием уравнений движения на графических процессорах.
• Метод экономичной «изохорной» МД-параметризации межчастичных потенциалов по экспериментальным данным о тепловом расширении.
• Параметры универсального НИИ для моделирования ИО2, РиО2 и (И, Ри)О2.
• Температурные зависимости теплофизических и диффузионных характеристик, полученные для бездефектных квазибесконечных кристаллов ИО2 и РиО2.
• Вывод об анионном механизме континуального суперионного перехода в ИО2 и РиО2, который характеризуется большой (порядка 1000 К) шириной и конечной высотой Х-пиков теплоемкости и коэффициента линейного расширения.
• Вывод о доминировании обменного механизма самодиффузии в кристаллической фазе при отсутствии поверхности и искусственных дефектов.
Личный вклад автора. Основные результаты диссертации получены автором лично. Комплекс программ для МД-моделирования на графических процессорах разработан совместно с Боярченковым Антоном Сергеевичем.
Достоверность полученных результатов обеспечивается хорошим (во многих случаях - количественным) совпадением свойств разработанной модели с экспериментальными данными, а также сравнением в работе десяти наиболее актуальных наборов межчастичных потенциалов, предложенных различными авторами, по широкому спектру теплофизических и диффузионных характеристик.
Апробация. Материалы диссертации представлялись и докладывались на следующих конференциях и семинарах.
• Всероссийская научно-практическая конференция с международным участием «Ядерная, радиационная безопасность и нераспространение» - ЯРБН (НТИ НИЯУ МИФИ, Новоуральск, 2010).
• XII, XIII, XIV Национальные конференции по росту кристаллов - НКРК (Институт кристаллографии РАН, Москва, 2006, 2008, 2010).
• VII, VIII, IX Всероссийские конференции по реакторному материаловедению - РМ (НИИАР, Димитровград, 2003, 2007, 2009).
• Всероссийская конференция «Химия твердого тела и функциональные материалы - 2004» (Институт химии твердого тела УрО РАН, Екатеринбург, 2004).
• IV всероссийский семинар СО РАН - УрО РАН «Термодинамика и материаловедение» (Институт химии твердого тела УрО РАН, Екатеринбург, 2004).
• Всероссийский отраслевой семинар «Вопросы создания новых методик исследований и испытаний, сличительных экспериментов, аттестации и аккредитации» (НИИАР, Димитровград, 2005).
• 1-й и 2-й Всероссийский отраслевой семинар «Физическое моделирование изменения свойств реакторных материалов в номинальных и аварийных условиях» (НИИАР, Димитровград, 2006, 2008).
Публикации. По материалам диссертации опубликовано 30 печатных работ, в том числе 6 статей в рецензируемых журналах из списка ВАК: «Journal of Nuclear Materials», «Вычислительные методы и программирование», «Альтернативная энергетика и экология», «Вестник УГТУ-УПИ».
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, библиографии из 158 наименований и содержит 133 страницы, 40 рисунков, 16 таблиц.
Автор выражает благодарность: своей супруге Маткиной М.А., научному руководителю профессору, д.ф.-м.н. Купряжкину А.Я., коллегам по научной группе Боярченкову А.С., Некрасову К.А., Коваленко М.А., Рисованому Д.В., Жиганову А.Н., Здобнухиной Н.В., Коромыслову А.В., всему коллективу кафедры технической физики Уральского федерального университета; и посвящает эту работу памяти своих родителей Поташниковой О.Н. (1956-2006), Поташникову И.Ш. (1955-2009).
1. Разработана высокоскоростная реализация полного шага молекулярной динамики (МД) на графических процессорах, которая при параллельном моделировании большого количества небольших систем является линейно-масштабируемой по закону Густафсона в отличие от традиционного моделирования одной системы с распараллеливанием расчета парных взаимодействий по частицам, масштабируемость которого ограничена законом Амдала. Создан соответствующий комплекс программ (включающий визуализацию динамики частиц и обработку результатов измерений).
2. Разработан самосогласованный метод МД-параметризации эмпирических межчастичных потенциалов по экспериментальным данным о тепловом расширении для учета зависимости свойств системы от температуры и ангармонических эффектов. Реализована «изохорная» (NVT) оптимизация по давлению, на 1-2 порядка более быстрая по сравнению с «изобарной» (NPT) оптимизацией по объему (периоду решетки) за счет усреднения лишь тепловых колебаний частиц вместо колебаний всего кристалла под действием баростата. Восстановлен единый набор парных потенциалов (НПП) для моделирования UO2, PuO2и MOX-смеси вида (U, Pu)O2.
3. Точность МД-моделирования увеличена на два порядка: температурные зависимости теплофизических и диффузионных величин измерены в широком диапазоне 0-7100 K с шагом 1 K вместо диапазона 300-3100 K с шагом 100-500 K, использованного в ранних работах. Это позволило: получить точную форму всех зависимостей и их производных, оценить случайные погрешности при резких скачках величин, обнаружить разрывы в зависимостях, даже при малых скачках величин и, как следствие, надежно зарегистрировать типы и характеристики фазовых переходов.
4. Время МД-моделирования увеличено на четыре порядка до 1000 нс (сотни миллионов МД-шагов) вместо 0.1 нс, использованного в ранних работах. Это обеспечило широкий диапазон измерений коэффициентов самодиффузии анионов (от 10-3 см2/с при плавлении до 10-11 см2/с при 1400 K) и позволило напрямую (без экстраполяций) сравнить результаты расчетов с имеющимися низкотемпературными (T < 1500 K) экспериментальными данными.
5. Для всех измеренных величин исследованы зависимости: от размера системы (в диапазоне от 96 до 12000 ионов), от граничных условий (кроме периодических систем рассмотрены изолированные в вакууме нанокристаллы со свободной поверхностью) и от межчастичных потенциалов (все расчеты проведены с десятью наиболее современными и широко используемыми НПП для ИО2 и РиО2).
6. Показано, что восстановленный в данной работе Н1П1 воспроизводит широкий спектр экспериментальных данных для ИО2 и РиО2 лучше, чем предложенные ранее и единственный из десяти рассмотренных Н1П1 является универсальным (так как количественно воспроизводит и теплофизические, и диффузионные свойства этих соединений).
7. Показано, что в модельных кристаллах ИО2 и РиО2 даже при отсутствии электронных и катионных дефектов существует суперионный фазовый переход (разупорядочение анионной подрешетки), который проявляется в виде Х-пиков на температурных зависимостях коэффициента линейного расширения, изобарной и изохорной теплоемкостей. В отличие от феноменологических моделей со скачкообразным фазовым переходом второго рода и соответствующим узким (порядка 50 К) Х-пиком бесконечной высоты, показано, что суперионный переход является континуальным (т.е. разупорядочение анионной подрешетки плавно нарастает с температурой) и характеризуется широкой (порядка 1000 К) переходной областью с Х-пиком конечной высоты. Исследована зависимость характеристик Х- пика от давления, показано, что в диапазоне от -5 до 5 ГПа его температура меняется линейно, а высота - параболически.
8. Показано, что температурная зависимость коэффициента самодиффузии анионов в аррениусовых координатах (1н0 от 1/кТ) имеет вид гиперболы с двумя асимптотами для кристаллической и суперионной фаз, что соответствует 8- образному графику энергии активации с двумя плато (для полностью упорядоченной и полностью разупорядоченной анионной подрешетки) и широкой переходной областью (порядка 1000 К) между ними. Кроме того, график производной температурной зависимости энергии активации также имеет Х-пик, положение которого совпадает по температуре с положением Х-пика теплоемкости.
9. Показано, что, в отличие от изолированных в вакууме нанокристаллов (со свободной поверхностью), в идеальных периодических кристаллах (без поверхностей или полостей) не существует долгоживущих собственных дефектов. Поэтому независимо от НИИ и размеров системы доминирует обменная диффузия (с циклическими перестановками ионов) при отсутствии междоузельной и вакансионной диффузии во всем исследованном диапазоне температур (вплоть до плавления). Причем ее энергия активации в кристаллической фазе совпадает с энергией образования дефектов Френкеля (междоузельный ион и вакансия), которая была рассчитана методом статики решетки.
2. Разработан самосогласованный метод МД-параметризации эмпирических межчастичных потенциалов по экспериментальным данным о тепловом расширении для учета зависимости свойств системы от температуры и ангармонических эффектов. Реализована «изохорная» (NVT) оптимизация по давлению, на 1-2 порядка более быстрая по сравнению с «изобарной» (NPT) оптимизацией по объему (периоду решетки) за счет усреднения лишь тепловых колебаний частиц вместо колебаний всего кристалла под действием баростата. Восстановлен единый набор парных потенциалов (НПП) для моделирования UO2, PuO2и MOX-смеси вида (U, Pu)O2.
3. Точность МД-моделирования увеличена на два порядка: температурные зависимости теплофизических и диффузионных величин измерены в широком диапазоне 0-7100 K с шагом 1 K вместо диапазона 300-3100 K с шагом 100-500 K, использованного в ранних работах. Это позволило: получить точную форму всех зависимостей и их производных, оценить случайные погрешности при резких скачках величин, обнаружить разрывы в зависимостях, даже при малых скачках величин и, как следствие, надежно зарегистрировать типы и характеристики фазовых переходов.
4. Время МД-моделирования увеличено на четыре порядка до 1000 нс (сотни миллионов МД-шагов) вместо 0.1 нс, использованного в ранних работах. Это обеспечило широкий диапазон измерений коэффициентов самодиффузии анионов (от 10-3 см2/с при плавлении до 10-11 см2/с при 1400 K) и позволило напрямую (без экстраполяций) сравнить результаты расчетов с имеющимися низкотемпературными (T < 1500 K) экспериментальными данными.
5. Для всех измеренных величин исследованы зависимости: от размера системы (в диапазоне от 96 до 12000 ионов), от граничных условий (кроме периодических систем рассмотрены изолированные в вакууме нанокристаллы со свободной поверхностью) и от межчастичных потенциалов (все расчеты проведены с десятью наиболее современными и широко используемыми НПП для ИО2 и РиО2).
6. Показано, что восстановленный в данной работе Н1П1 воспроизводит широкий спектр экспериментальных данных для ИО2 и РиО2 лучше, чем предложенные ранее и единственный из десяти рассмотренных Н1П1 является универсальным (так как количественно воспроизводит и теплофизические, и диффузионные свойства этих соединений).
7. Показано, что в модельных кристаллах ИО2 и РиО2 даже при отсутствии электронных и катионных дефектов существует суперионный фазовый переход (разупорядочение анионной подрешетки), который проявляется в виде Х-пиков на температурных зависимостях коэффициента линейного расширения, изобарной и изохорной теплоемкостей. В отличие от феноменологических моделей со скачкообразным фазовым переходом второго рода и соответствующим узким (порядка 50 К) Х-пиком бесконечной высоты, показано, что суперионный переход является континуальным (т.е. разупорядочение анионной подрешетки плавно нарастает с температурой) и характеризуется широкой (порядка 1000 К) переходной областью с Х-пиком конечной высоты. Исследована зависимость характеристик Х- пика от давления, показано, что в диапазоне от -5 до 5 ГПа его температура меняется линейно, а высота - параболически.
8. Показано, что температурная зависимость коэффициента самодиффузии анионов в аррениусовых координатах (1н0 от 1/кТ) имеет вид гиперболы с двумя асимптотами для кристаллической и суперионной фаз, что соответствует 8- образному графику энергии активации с двумя плато (для полностью упорядоченной и полностью разупорядоченной анионной подрешетки) и широкой переходной областью (порядка 1000 К) между ними. Кроме того, график производной температурной зависимости энергии активации также имеет Х-пик, положение которого совпадает по температуре с положением Х-пика теплоемкости.
9. Показано, что, в отличие от изолированных в вакууме нанокристаллов (со свободной поверхностью), в идеальных периодических кристаллах (без поверхностей или полостей) не существует долгоживущих собственных дефектов. Поэтому независимо от НИИ и размеров системы доминирует обменная диффузия (с циклическими перестановками ионов) при отсутствии междоузельной и вакансионной диффузии во всем исследованном диапазоне температур (вплоть до плавления). Причем ее энергия активации в кристаллической фазе совпадает с энергией образования дефектов Френкеля (междоузельный ион и вакансия), которая была рассчитана методом статики решетки.



