Актуальность темы
Металлургическое производство представляет собой производственный процесс, включающий выплавку стали, разливку в сталеразливочные ковши, внепечную обработку стали в сталеразливочных ковшах на установках «печь- ковш» и в «вакууматоре». Огнеупорные футеровки ковшей подвергаются агрессивному физико-химическому воздействию металла и шлака при процессах вакуумно-кислородного рафинирования (VOR), азотно-кислородного обезуглероживания (AOD), вакуумно-дугового переплава (VAR), циркуляционного вакуумирования (RH), электродугового индукционного перемешивания сталей.
Особо агрессивными по отношению к огнеупорам являются шлаки, образующиеся при выплавке сталей из ванадийсодержащего чугуна. Имеющиеся в шлаке оксиды ванадия разлагаются с выделением свободного кислорода, окисляющего углеродную составляющую огнеупоров, и образуют с оксидами огнеупоров (MgO, Al2O3, CaO) легкоплавкие эвтектики. Сталеразливочные ковши фактически являются реакторами для ведения технологических операций. В этих условиях резко возросла значимость огнеупорной футеровки.
В промышленной практике высокоразвитых стран наблюдается заметная ориентация на все большее использование в футеровках сталеразливочных ковшей оксидоуглеродистых огнеупоров (периклазоуглеродистых, корундоуглеродистых, шпинельноуглеродистых). Повышенные расходы, связанные с изготовлением и ремонтами футеровок ковшей, свидетельствуют о необходимости повышения ресурса службы огнеупоров.
Одним из актуальных направлений в повышении стойкости футеровок ковшей являются исследования, направленные на формирование фазового состава, и создание тонкокапиллярной структуры оксидоуглеродистых огнеупоров.
Объект исследования - оксидоуглеродистые огнеупоры для футеровок сталеразливочных ковшей, используемых при производстве стали из ванадий-содержащего чугуна.
Предмет исследования - физико-химические процессы структуро- и фазообразования, происходящие при температурах эксплуатации в огнеупорных футеровках сталеразливочных ковшей.
Цель диссертационной работы - разработка состава и технологии производства корундопериклазоуглеродистых огнеупоров, применяемых в футеровках сталеразливочных ковшей при производстве стали из ванадийсодержащего чугуна.
Для достижения цели были поставлены и решены следующие задачи:
1. Исследованы влияния особенностей вещественного состава исходного сырья на физико-механические свойства оксидоуглеродистых огнеупоров.
2. Исследованы влияния антиокислительных добавок на формирование структуры оксидоуглеродистых огнеупоров.
3. Изучены процессы, протекающие в структуре оксидоуглеродистых огнеупоров при высоких температурах.
4. Разработаны составы и технологические параметры для производства оксидоуглеродистых огнеупоров на основе корунда и периклаза.
5. Разработано защитное покрытие для огнеупорной футеровки, предотвращающее выгорание углерода при разогреве сталеразливочных ковшей.
6. Изготовлены и испытаны опытно-промышленные партии корундоперик-лазоуглеродистых изделий.
Испытания проведены на ООО «Никомогнеупор» и ОАО «Нижнетагильский металлургический комбинат» (г. Нижний Тагил).
Научная новизна
1. Определено фазо- и структурообразование в системе А12О3-МдО-С-А1 в интервале температур 200-1600 °С. Установлено, что металлический алюминий в составе оксидоуглеродистой шихты является не только антиоксидантом, но и определяет протекание газотранспортных химических реакций образования карбидных и оксикарбидных соединений, изменяющих структуру огнеупорного изделия в процессе эксплуатации.
2. Установлено, что увеличение концентрации алюминия в шихте до 7,5 % и повышение температуры термообработки периклазоуглеродистых изделий до 1450 °С повышает многомодальность пористой структуры изделий, при этом увеличивается доля пор с радиусом от 0,005 до 4,5 мкм, что повышает коррозионную стойкость огнеупорных изделий в службе.
3. Показано, что определяющая роль в формировании металло- и шлако-устойчивой микроструктуры оксидоуглеродистых огнеупоров принадлежит процессам карбидо- и шпинелеобразования, протекающим при нагреве футеровки под действием высоких температур.
4. Показано, что процессы синтеза шпинелей нескольких генераций в тонкодисперсной части шихты при производстве и эксплуатации корундоперик-лазоуглеродистых изделий способствуют повышенной стойкости к разупрочнению футеровки сталеразливочных ковшей при эксплуатации.
Практическая ценность работы
На основании проведенных исследований разработана и реализована технология изготовления корундопериклазоуглеродистых огнеупоров (КПУ) в промышленных условиях. Огнеупоры имеют физико-механические свойства на уровне продукции ведущих зарубежных производителей, а по ряду показателей (предел прочности образцов при сжатии, изменению физико-механических свойств образцов до и после коксования) превосходят импортные и отечественные аналоги.
Разработан состав защитного покрытия для предотвращения выгорания углерода с поверхности футеровки сталеразливочных ковшей во время технологического нагрева ковша перед эксплуатацией до 1000 °С.
Разработана технологическая инструкция на производство оксидоуглеродистых огнеупоров (ТИ 102-0-189-2004 г.), и в условиях производства ООО «Никомогнеупор» выпущены их опытно-промышленные партии, которые испытаны в конвертерном цехе ОАО «НТМК» (г. Нижний Тагил).
На защиту выносятся:
- фазо- и структурообразование в системе А12О3-МдО-С-А1 в интервале температур 200-1600 °С;
- составы и технологические особенности производства оксидоуглеродистых огнеупоров;
- технология производства корундопериклазоуглеродистых огнеупоров для футеровки сталеразливочных ковшей.
Личный вклад автора заключается:
- в установлении физико-химических особенностей и определяющей роли процессов карбидо и шпинелеобразования в формировании структуры оксидоуглеродистых огнеупоров под действием высоких температур использования;
- в организации и проведении опытно-экспериментальных и промышленных работ по разработке и внедрению технологии производства корундопериклазоуглеродистых огнеупоров и испытании их в футеровках сталеразливочных ковшей конвертерного цеха ОАО «НТМК» (г. Нижний Тагил);
- в обобщении результатов исследований и написании диссертации и статей.
Реализация результатов работы
Достоверность результатов работы подтверждена заключением от 06.03.2007г. №184-83-464 и использованием 36 опытно-промышленных футеровок в конвертерном цехе ОАО «НТМК» в 2007 г. Стойкость опытно-промышленных футеровок на 15 % превышала стойкость серийно используемых футеровок. Дальнейшее внедрение научных разработок, изложенных в диссертации, позволило к 2010 г. повысить стойкость футеровок сталеразливочных ковшей на ОАО «НТМК» с 45 до 85 плавок.
Апробация работы
Материалы диссертации докладывались и обсуждались на: - международной конференции «Технология и оборудование для производства огнеупоров» (Москва, 2007г.); - международной научно-практической конференции «Основные направления развития огнеупорного производства в условиях внедрения новых современных технологии в металлургии» (Украина, Ялта, 2007 г.); - ежегодных международных конференциях огнеупорщиков и металлургов (Москва, 2009, 2010 гг.).
Публикации Основные положения диссертации опубликованы в 15 статьях, из них 14 - в изданиях, рекомендованных ВАК, получен патент РФ № 2356869.
Структура и объем работы. Диссертационная работа состоит из введения, шести глав, основных выводов по работе, библиографического списка из 105 наименовании и двух приложении. Работа изложена на 139 страницах, содержит 48 рисунков и 78 таблиц.
1. Определено фазо- и структурообразование в системе А12О3-МдО-С-А1 при различных температурах. Термодинамически обосновано и эксперементально подтверждено образование и существование соединений: шпинели, карбида алюминия и корунда в интервале температур 800-1450 °С, наличие которых обеспечивает повышение показателей технических свойств корундоперик¬лазоуглеродистых изделий.
2. Выявлена роль антиоксиданта А1 в составе оксидоуглеродистого огнеупора, заключающаяся в том, что он участвует в химических реакциях, связывая углерод в карбид (А14С3) и оксикарбиды (А12ОС, А14О4С) и повышает тем самым устойчивость углеродистой составляющей к окислению в составе огнеупорного изделия.
3. Экспериментально установлено, что карбид алюминия образующийся в микроструктуре корундопериклазоуглеродистого огнеупора, разлагается при температуре выше 1450 °С с образованием термодинамически более устойчивых фаз - корунда, углерода и шпинели, изменяющих микроструктуру изделий. При этом доля тонкокапиллярных пор радиусом менее 30 мкм резко возрастает, что способствует повышению устойчивости изделий к металлургическому шлаку.
4. Установлено, что шпинелеобразование в процессе использования огнеупоров является целесообразным, поскольку повышается плотность и коррозионная устойчивость корундопериклазоуглеродистых огнеупоров. Более высокие свойства огнеупоров достигаются при использовании комплексной тонкомолотой составляющей шихты, содержащей оптимальное количество глиноземистого и магнезиального компонентов, в отношении 1:1, а также оптимальное количество металлического алюминия в качестве антиоксиданта.
5. Разработано защитное покрытие, препятствующее выгоранию углеродистой составляющей корундопериклазоуглеродистых огнеупоров, которое рекомендуется использовать на стадии разогрева футеровки ковша, что дополнительно, способствует увеличению стойкости на 3-5 плавок.
6. На ООО «Никомогнеупор» выпущены опытно-промышленные партии корундопериклазоуглеродистых огнеупоров марки КПУ для футеровки сталеразливочного ковша конвертерного производства ОАО «НТМК». Разработанные корундопериклазоуглеродистые изделия по физико-химическим и термодинамическим свойствам не уступают зарубежным и отечественным аналогам и имеют следующие свойства: предел прочности при сжатии 70,0 Н/мм2, открытую пористость 2,8 %, содержание оксидов, масс. %: А12О3- 79,6; МдО - 5,65; С - 10,1. Разработана технологическая инструкция ТИ 102-0-189-2004 по производству корундопериклазоуглеродистых огнеупоров. Экономический эффект от проведенной работы составил 18 908 тыс. рублей.