ВЛИЯНИЕ ЭКРАНИРОВАНИЯ ДЕПОЛЯРИЗУЮЩИХ ПОЛЕЙ НА КИНЕТИКУ ДОМЕННОЙ СТРУКТУРЫ МОНОКРИСТАЛЛОВ СЕМЕЙСТВА НИОБАТА ЛИТИЯ И ТАНТАЛАТА ЛИТИЯ
|
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ РАБОТЫ
ЦИТИРУЕМАЯ ЛИТЕРАТУРА
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ РАБОТЫ
ЦИТИРУЕМАЯ ЛИТЕРАТУРА
Актуальность темы.
Переключение поляризации в сегнетоэлектрике под действием внешнего электрического поля, происходящее за счет образования и роста доменов, можно рас-сматривать как аналог фазового перехода первого рода. Поэтому кинетика доменной структуры в процессе переключения поляризации представляет собой фундаментальную проблему физики конденсированного состояния, связанную с исследованием закономерностей кинетики фазовых превращений.
При изменении доменной структуры сегнетоэлектриков принципиальную роль играют процессы внешнего и объемного экранирования деполяризующего поля, создаваемого связанными зарядами. Медленные процессы объемного экранирования приводят к эффектам памяти и в значительной степени определяют кинетику доме-нов. Изучение влияния процессов экранирования деполяризующих полей на эволюцию доменной структуры необходимо для решения важной фундаментальной проблемы физики сегнетоэлектриков - процесса переключения поляризации.
Растущий интерес к доменной структуре сегнетоэлектриков во многом вызван бурным развитием в последние годы новой отрасли науки и технологии - «доменной инженерии». Данная область знаний занимается разработкой и усовершенствованием методов создания в сегнетоэлектрических монокристаллах доменных структур с заданной геометрией для различных применений. Основной задачей доменной инженерии на данный момент является создание стабильных регулярных доменных структур для улучшения нелинейно-оптических, электрооптических и акустических характеристик, в частности для изготовления эффективных преобразователей частоты когерентного излучения. Наиболее широко используемыми материалами для таких применений являются монокристаллы семейства ниобата лития и танталата лития. Периодические доменные структуры создают приложением пространственно неоднородного электрического поля создаваемого системой периодических полосовых электродов, нанесенных на полярную поверхность сегнетоэлектрической пластины. Для оптимального подбора технологических параметров необходимо пони-мание закономерностей кинетики доменной структуры и процессов объемного экранирования, играющих принципиальную роль для стабилизации созданных доменных структур.
Интерес к исследованию особенностей кинетики доменной структуры при циклическом переключении обусловлен созданием элементов энергонезависимой памяти на основе сегнетоэлектрических тонких пленок. Широкое применение таких элементов ограничено характерным для сегнетоэлектриков «эффектом усталости» - уменьшением переключаемого заряда при многократном циклическом переключении поляризации. Принято считать, что эффект усталости связан с процессом объемного экранирования.
Таким образом, комплексное исследование процессов объемного экранирования и их влияния на кинетику доменной структуры актуально как для решения фундаментальных проблем физики твердого тела, так и для важных практических применений.
Целью работы является исследование процессов объемного экранирования в монокристаллах семейства ниобата лития (I,¡N603. ЬЫ) и танталата лития (Ь1ТаО3, ЬТ) и их влияния на кинетику доменной структуры в данных материалах.
Для реализации поставленной цели были сформулированы следующие основные задачи:
1) Разработать методы измерения параметров процесса объемного экранирования в монокристаллах семейства ЬЫ и ЬТ.
2) Провести комплексное исследование процесса объёмного экранирования в монокристаллах ЬЫ и ЬТ с различным легированием и степенью отклонения от стехиометрического состава с использованием разработанных методов.
3) Исследовать влияние процессов объемного экранирования на кинетику доменной структуры в монокристаллах ЬЫ и ЬТ стехиометрического состава.
4) Провести детальное исследование кинетики доменной структуры в ЬЫ и ЬТ стехиометрического и конгруэнтного состава при циклическом переключении с ис-пользованием жидких и твердотельных электродов.
Объекты исследования
Исследование кинетики доменной структуры проводилось в монокристаллах ниобата лития и танталата лития с различной степенью отклонения от стехиометрического состава. как номинально чистых. так и легированных магнием и эрбием.
Научная новизна работы заключается в следующем:
1) Разработаны оригинальные методы определения основных параметров процесса объемного экранирования в ЬЫ и ЬТ на основе анализа: (а) токов переключения. (б) релаксации контраста «следа» доменной стенки, (в) интенсивности когерентного света, дифрагировавшего на доменных стенках.
2) Впервые проведено комплексное исследование кинетики объёмного экранирования в монокристаллах ЬЫ и ЬТ с различной степенью отклонения от стехиометрического состава и легированием.
3) Впервые прямая визуализация доменов использована для детального исследования кинетики доменной структуры в монокристаллах ЬЫ и ЬТ стехиометрического состава с рекордно низкими коэрцитивными полями.
4) Предложена модель движения доменной стенки с учетом взаимодействия с центрами пиннинга, основанная на ключевой роли запаздывания объемного экранирования. Модель успешно использована для описания экспериментальной поле-вой зависимости времени переключения в стехиометрическом ЬТ.
5) Предложен и экспериментально подтвержден новый механизм эффекта усталости в сегнетоэлектриках при циклическом переключении, обусловленный образованием «замороженных доменов» (не переключающихся областей, содержащих заряженные доменные стенки).
6) Предложен новый подход к описанию процесса усталости (зависимости оста-точной поляризации от количества циклов переключения) с использованием формулы Колмогорова-Аврами, модифицированной для переключения поляризации в ограниченном объеме.
Практическая значимость.
1. Разработанные методы измерения параметров объемного экранирования будут использованы для контроля качества и пространственной однородности моно-кристаллов LN и LT.
2. Предложенный новый механизм описания процесса усталости будет использоваться для анализа усталостных явлений и повышения ресурса работы сегнето-электрических устройств на основе циклического переключения.
3. Выявленные закономерности и параметры кинетики доменной структуры в монокристаллах LN и LT стехиометрического состава будут использоваться для разработки улучшенных методов формирования прецизионных периодических доменных структур для эффективных преобразователей длины волны с повышенной мощностью, эффективностью и надежностью.
Достоверность полученных результатовобеспечивается применением современного и надежного аттестованного оборудования, надежной статистикой проведенных экспериментов, применением современных и независимых методов обработки экспериментальных данных, согласием с результатами других авторов и не-противоречивостью известным физическим моделям. Достоверность проведенных расчетов подтверждается обоснованностью принятых допущений, а также согласованностью с экспериментальными данными.
Основные положения и результаты, выносимые на защиту:
1. Методы определения основных параметров процесса объемного экранирования, основанные на анализе: (а) токов переключения, (б) релаксации контраста «следа» доменной стенки, (в) интенсивности когерентного света, дифрагировавшего на доменных стенках.
2. Результаты комплексного исследования процесса объёмного экранирования в монокристаллах LN и LT с различным легированием и степенью отклонения от стехиометрического состава.
3. Модель движения доменной стенки в слабых полях с учетом взаимодействия с центрами пиннинга, основанная на ключевой роли запаздывания объемного экранирования.
4. Особенности кинетики доменной структуры в монокристаллах LN и LT стехио-метрического и конгруэнтного состава при циклическом переключении с жидкими и твердотельными электродами
5. Новый подход к описанию зависимости остаточной поляризации от количества циклов переключения в процессе усталости, сопровождающемся ростом областей с не переключающимися доменами с заряженными доменными стенками.
Апробация работы.
Основные результаты были представлены на 25 Всероссийских и международных конференциях и симпозиумах: XVII, XVIII и XIX Всероссийских конференциях по физике сегнетоэлектриков (27.06-1.07.2005, Пенза; 12-14.06.2008, Санкт- Петербург; 20-23.06.2011, Москва), International Symposiums on Ferroic Domains and Micro- to Nanoscopic Structures (26-30.06.2006, Dresden, Germany; 20-24.09.2010, Pra¬gue, Czech Republic), European Conferences on Applications of Polar Dielectrics (4¬8.09.2006, Metz, France; 26-29.08.2008, Roma, Italy), International Seminars on Ferroe- lastic Physics (10-13.09.2006, 22-25.09.2009, Воронеж, Россия), 19th International Sym¬posium on Integrated Ferroelectrics (8-12.05.2007, Bordeaux, France), International Sym¬posiums “Micro- and Nano-scale Domain Structuring in Ferroelectrics” (22-27.08.2007, 13-18.09.2009, Екатеринбург), European Meetings on Ferroelectricity (3-7.09.2007, Bled, Slovenia; 26.06-2.07.2011, Bordeaux, France,), Russia/CIS/Baltic/Japan Symposi¬ums on Ferroelectricity (15-19.06.2008, Vilnius, Lithuania; 20-24.06.2010, Yokohama, Japan), Mini-Symposium on Periodically-Modulated and Artificially Hetero-Structured Electrooptic Devices (18-21.05.2009, Grasmere, United Kingdom), 12th International Meeting on Ferroelectricity and 18th IEEE International Symposium on Applications of Ferroelectrics (23-27.08.2009, Xi'an, China), 19th International Symposium on the Appli¬cations of Ferroelectrics and 10th European Conference on the Applications of Polar Die¬lectrics (10-12.08.2010, Edinburgh, United Kingdom), X, XI и XII Всероссийских молодёжных школах-семинарах по проблемам физики конденсированного состояния вещества (9-15.11.2009, 15-21.11.2010, 14-20.11.2011, Екатеринбург), 22ой международной конференции "Релаксационные явления в твердых телах" (14-18.09.2010, Воронеж), 2ой Уральской школе «Современные нанотехнологии. Сканирующая зондовая микроскопия» (18-23.04.2011, Екатеринбург), 20th IEEE International Symposi¬um on Applications ofFerroelectrics and International Symposium on Piezoresponse Force Microscopy & Nanoscale Phenomena in Polar Materials (24-27.07.2011, Vancou¬ver, Canada).
Публикации и личный вклад автора.
Основные результаты исследований опубликованы в 5 статьях в реферируемых печатных изданиях и 40 тезисах Всероссийских и международных конференций (всего 45 печатных работ). Диссертационная работа выполнена в лаборатории сегнетоэлектриков отдела оптоэлектроники и полупроводниковой техники Института естественных наук Уральского федерального университета имени первого Президента России Б.Н.Ельцина в рамках исследований, проводимых при частичной поддержке РФФИ (гранты 08-02-12173-офи, 10-02-96042-р_урал_а, 10-02-00627-а, 10- 02-96042-р-Урал-а, 08-02-90434-Укр_а, 08-02-99082-р_офи, 11-02-91066-CNRS-а), Федерального Агентства по образованию, ФЦП «Научные и педагогические кадры инновационной России на 2009 - 2013 годы» (гос. контракты № 02.552.11.7069, П870, П2127, 16.552.11.7020), а также стипендий Губернатора Свердловской области (2010/2011 и 2011/2012 уч. г.), Правительства РФ (2010/2011 уч. г.) и Президента РФ (2011/2012 уч. г.).
Устный доклад по теме работы был признан лучшим на International Symposi¬ums “Micro- and Nano-scale Domain Structuring in Ferroelectrics”, 2009, Екатеринбург. Стендовый доклад по теме работы был признан лучшим на 10th Rus- sia/CIS/Baltic/Japan Symposiums on Ferroelectricity, 2010, Yokohama, Japan.
Все основные результаты работы были получены лично автором. Выбор направления исследований, обсуждение результатов и формулировка задач проводились совместно с научным руководителем профессором В.Я. Шуром и с.н.с. И.С. Батуриным. Экспериментальные измерения параметров объемного экранирования и интегральных параметров переключения проводились автором лично. 1п зНи визуализация кинетики доменной структуры с использованием сверхбыстрой видео-камеры проводилась совместно с м.н.с. М.С. Коневым. Исследование процесса объемного экранирования методом анализа интенсивности дифрагировавшего света проводилось совместно с м.н.с. М.С. Небогатиковым. Статистический анализ токов переключения проводился совместно с с.н.с. Е.В. Шишкиной. Визуализация доменных структур сканирующей конфокальной микроскопией комбинационного рассеяния проводилась совместно с н.с. П.С. Зеленовским.
Автором работы написано все оригинальное программное обеспечение для автоматизации обработки экспериментальных данных.
Структура и объем диссертации
Диссертационная работа состоит из введения, пяти глав, заключения и списка цитируемой литературы. Общий объем работы составляет 152 страницы, включая 76 рисунков, 11 таблиц, список условных обозначений и библиографию из 167 наименований.
Переключение поляризации в сегнетоэлектрике под действием внешнего электрического поля, происходящее за счет образования и роста доменов, можно рас-сматривать как аналог фазового перехода первого рода. Поэтому кинетика доменной структуры в процессе переключения поляризации представляет собой фундаментальную проблему физики конденсированного состояния, связанную с исследованием закономерностей кинетики фазовых превращений.
При изменении доменной структуры сегнетоэлектриков принципиальную роль играют процессы внешнего и объемного экранирования деполяризующего поля, создаваемого связанными зарядами. Медленные процессы объемного экранирования приводят к эффектам памяти и в значительной степени определяют кинетику доме-нов. Изучение влияния процессов экранирования деполяризующих полей на эволюцию доменной структуры необходимо для решения важной фундаментальной проблемы физики сегнетоэлектриков - процесса переключения поляризации.
Растущий интерес к доменной структуре сегнетоэлектриков во многом вызван бурным развитием в последние годы новой отрасли науки и технологии - «доменной инженерии». Данная область знаний занимается разработкой и усовершенствованием методов создания в сегнетоэлектрических монокристаллах доменных структур с заданной геометрией для различных применений. Основной задачей доменной инженерии на данный момент является создание стабильных регулярных доменных структур для улучшения нелинейно-оптических, электрооптических и акустических характеристик, в частности для изготовления эффективных преобразователей частоты когерентного излучения. Наиболее широко используемыми материалами для таких применений являются монокристаллы семейства ниобата лития и танталата лития. Периодические доменные структуры создают приложением пространственно неоднородного электрического поля создаваемого системой периодических полосовых электродов, нанесенных на полярную поверхность сегнетоэлектрической пластины. Для оптимального подбора технологических параметров необходимо пони-мание закономерностей кинетики доменной структуры и процессов объемного экранирования, играющих принципиальную роль для стабилизации созданных доменных структур.
Интерес к исследованию особенностей кинетики доменной структуры при циклическом переключении обусловлен созданием элементов энергонезависимой памяти на основе сегнетоэлектрических тонких пленок. Широкое применение таких элементов ограничено характерным для сегнетоэлектриков «эффектом усталости» - уменьшением переключаемого заряда при многократном циклическом переключении поляризации. Принято считать, что эффект усталости связан с процессом объемного экранирования.
Таким образом, комплексное исследование процессов объемного экранирования и их влияния на кинетику доменной структуры актуально как для решения фундаментальных проблем физики твердого тела, так и для важных практических применений.
Целью работы является исследование процессов объемного экранирования в монокристаллах семейства ниобата лития (I,¡N603. ЬЫ) и танталата лития (Ь1ТаО3, ЬТ) и их влияния на кинетику доменной структуры в данных материалах.
Для реализации поставленной цели были сформулированы следующие основные задачи:
1) Разработать методы измерения параметров процесса объемного экранирования в монокристаллах семейства ЬЫ и ЬТ.
2) Провести комплексное исследование процесса объёмного экранирования в монокристаллах ЬЫ и ЬТ с различным легированием и степенью отклонения от стехиометрического состава с использованием разработанных методов.
3) Исследовать влияние процессов объемного экранирования на кинетику доменной структуры в монокристаллах ЬЫ и ЬТ стехиометрического состава.
4) Провести детальное исследование кинетики доменной структуры в ЬЫ и ЬТ стехиометрического и конгруэнтного состава при циклическом переключении с ис-пользованием жидких и твердотельных электродов.
Объекты исследования
Исследование кинетики доменной структуры проводилось в монокристаллах ниобата лития и танталата лития с различной степенью отклонения от стехиометрического состава. как номинально чистых. так и легированных магнием и эрбием.
Научная новизна работы заключается в следующем:
1) Разработаны оригинальные методы определения основных параметров процесса объемного экранирования в ЬЫ и ЬТ на основе анализа: (а) токов переключения. (б) релаксации контраста «следа» доменной стенки, (в) интенсивности когерентного света, дифрагировавшего на доменных стенках.
2) Впервые проведено комплексное исследование кинетики объёмного экранирования в монокристаллах ЬЫ и ЬТ с различной степенью отклонения от стехиометрического состава и легированием.
3) Впервые прямая визуализация доменов использована для детального исследования кинетики доменной структуры в монокристаллах ЬЫ и ЬТ стехиометрического состава с рекордно низкими коэрцитивными полями.
4) Предложена модель движения доменной стенки с учетом взаимодействия с центрами пиннинга, основанная на ключевой роли запаздывания объемного экранирования. Модель успешно использована для описания экспериментальной поле-вой зависимости времени переключения в стехиометрическом ЬТ.
5) Предложен и экспериментально подтвержден новый механизм эффекта усталости в сегнетоэлектриках при циклическом переключении, обусловленный образованием «замороженных доменов» (не переключающихся областей, содержащих заряженные доменные стенки).
6) Предложен новый подход к описанию процесса усталости (зависимости оста-точной поляризации от количества циклов переключения) с использованием формулы Колмогорова-Аврами, модифицированной для переключения поляризации в ограниченном объеме.
Практическая значимость.
1. Разработанные методы измерения параметров объемного экранирования будут использованы для контроля качества и пространственной однородности моно-кристаллов LN и LT.
2. Предложенный новый механизм описания процесса усталости будет использоваться для анализа усталостных явлений и повышения ресурса работы сегнето-электрических устройств на основе циклического переключения.
3. Выявленные закономерности и параметры кинетики доменной структуры в монокристаллах LN и LT стехиометрического состава будут использоваться для разработки улучшенных методов формирования прецизионных периодических доменных структур для эффективных преобразователей длины волны с повышенной мощностью, эффективностью и надежностью.
Достоверность полученных результатовобеспечивается применением современного и надежного аттестованного оборудования, надежной статистикой проведенных экспериментов, применением современных и независимых методов обработки экспериментальных данных, согласием с результатами других авторов и не-противоречивостью известным физическим моделям. Достоверность проведенных расчетов подтверждается обоснованностью принятых допущений, а также согласованностью с экспериментальными данными.
Основные положения и результаты, выносимые на защиту:
1. Методы определения основных параметров процесса объемного экранирования, основанные на анализе: (а) токов переключения, (б) релаксации контраста «следа» доменной стенки, (в) интенсивности когерентного света, дифрагировавшего на доменных стенках.
2. Результаты комплексного исследования процесса объёмного экранирования в монокристаллах LN и LT с различным легированием и степенью отклонения от стехиометрического состава.
3. Модель движения доменной стенки в слабых полях с учетом взаимодействия с центрами пиннинга, основанная на ключевой роли запаздывания объемного экранирования.
4. Особенности кинетики доменной структуры в монокристаллах LN и LT стехио-метрического и конгруэнтного состава при циклическом переключении с жидкими и твердотельными электродами
5. Новый подход к описанию зависимости остаточной поляризации от количества циклов переключения в процессе усталости, сопровождающемся ростом областей с не переключающимися доменами с заряженными доменными стенками.
Апробация работы.
Основные результаты были представлены на 25 Всероссийских и международных конференциях и симпозиумах: XVII, XVIII и XIX Всероссийских конференциях по физике сегнетоэлектриков (27.06-1.07.2005, Пенза; 12-14.06.2008, Санкт- Петербург; 20-23.06.2011, Москва), International Symposiums on Ferroic Domains and Micro- to Nanoscopic Structures (26-30.06.2006, Dresden, Germany; 20-24.09.2010, Pra¬gue, Czech Republic), European Conferences on Applications of Polar Dielectrics (4¬8.09.2006, Metz, France; 26-29.08.2008, Roma, Italy), International Seminars on Ferroe- lastic Physics (10-13.09.2006, 22-25.09.2009, Воронеж, Россия), 19th International Sym¬posium on Integrated Ferroelectrics (8-12.05.2007, Bordeaux, France), International Sym¬posiums “Micro- and Nano-scale Domain Structuring in Ferroelectrics” (22-27.08.2007, 13-18.09.2009, Екатеринбург), European Meetings on Ferroelectricity (3-7.09.2007, Bled, Slovenia; 26.06-2.07.2011, Bordeaux, France,), Russia/CIS/Baltic/Japan Symposi¬ums on Ferroelectricity (15-19.06.2008, Vilnius, Lithuania; 20-24.06.2010, Yokohama, Japan), Mini-Symposium on Periodically-Modulated and Artificially Hetero-Structured Electrooptic Devices (18-21.05.2009, Grasmere, United Kingdom), 12th International Meeting on Ferroelectricity and 18th IEEE International Symposium on Applications of Ferroelectrics (23-27.08.2009, Xi'an, China), 19th International Symposium on the Appli¬cations of Ferroelectrics and 10th European Conference on the Applications of Polar Die¬lectrics (10-12.08.2010, Edinburgh, United Kingdom), X, XI и XII Всероссийских молодёжных школах-семинарах по проблемам физики конденсированного состояния вещества (9-15.11.2009, 15-21.11.2010, 14-20.11.2011, Екатеринбург), 22ой международной конференции "Релаксационные явления в твердых телах" (14-18.09.2010, Воронеж), 2ой Уральской школе «Современные нанотехнологии. Сканирующая зондовая микроскопия» (18-23.04.2011, Екатеринбург), 20th IEEE International Symposi¬um on Applications ofFerroelectrics and International Symposium on Piezoresponse Force Microscopy & Nanoscale Phenomena in Polar Materials (24-27.07.2011, Vancou¬ver, Canada).
Публикации и личный вклад автора.
Основные результаты исследований опубликованы в 5 статьях в реферируемых печатных изданиях и 40 тезисах Всероссийских и международных конференций (всего 45 печатных работ). Диссертационная работа выполнена в лаборатории сегнетоэлектриков отдела оптоэлектроники и полупроводниковой техники Института естественных наук Уральского федерального университета имени первого Президента России Б.Н.Ельцина в рамках исследований, проводимых при частичной поддержке РФФИ (гранты 08-02-12173-офи, 10-02-96042-р_урал_а, 10-02-00627-а, 10- 02-96042-р-Урал-а, 08-02-90434-Укр_а, 08-02-99082-р_офи, 11-02-91066-CNRS-а), Федерального Агентства по образованию, ФЦП «Научные и педагогические кадры инновационной России на 2009 - 2013 годы» (гос. контракты № 02.552.11.7069, П870, П2127, 16.552.11.7020), а также стипендий Губернатора Свердловской области (2010/2011 и 2011/2012 уч. г.), Правительства РФ (2010/2011 уч. г.) и Президента РФ (2011/2012 уч. г.).
Устный доклад по теме работы был признан лучшим на International Symposi¬ums “Micro- and Nano-scale Domain Structuring in Ferroelectrics”, 2009, Екатеринбург. Стендовый доклад по теме работы был признан лучшим на 10th Rus- sia/CIS/Baltic/Japan Symposiums on Ferroelectricity, 2010, Yokohama, Japan.
Все основные результаты работы были получены лично автором. Выбор направления исследований, обсуждение результатов и формулировка задач проводились совместно с научным руководителем профессором В.Я. Шуром и с.н.с. И.С. Батуриным. Экспериментальные измерения параметров объемного экранирования и интегральных параметров переключения проводились автором лично. 1п зНи визуализация кинетики доменной структуры с использованием сверхбыстрой видео-камеры проводилась совместно с м.н.с. М.С. Коневым. Исследование процесса объемного экранирования методом анализа интенсивности дифрагировавшего света проводилось совместно с м.н.с. М.С. Небогатиковым. Статистический анализ токов переключения проводился совместно с с.н.с. Е.В. Шишкиной. Визуализация доменных структур сканирующей конфокальной микроскопией комбинационного рассеяния проводилась совместно с н.с. П.С. Зеленовским.
Автором работы написано все оригинальное программное обеспечение для автоматизации обработки экспериментальных данных.
Структура и объем диссертации
Диссертационная работа состоит из введения, пяти глав, заключения и списка цитируемой литературы. Общий объем работы составляет 152 страницы, включая 76 рисунков, 11 таблиц, список условных обозначений и библиографию из 167 наименований.
Проведенное систематическое исследование влияния процессов объемного экранирования деполяризующего поля на кинетику доменной структуры в монокристаллах ЬК и ЬТ позволяет сделать следующие выводы:
1) Предложены и апробированы оригинальные методы определения основных параметров процесса объемного экранирования в ЬК и ЬТ на основе анализа токов переключения, релаксации контраста «следа» доменной стенки и интенсивности когерентного света, дифрагировавшего на доменных стенках.
2) Показано, что в монокристаллах семейства LN и LT легирование Mg и Er, а также переход от конгруэнтного состава к стехиометрическому приводят к значительному уменьшению полей объемного экранирования и увеличению характерных времен релаксации. Наблюдаемый эффект объяснен уменьшением концентрации дипольных дефектов.
3) Впервые в монокристаллах LN и LT стехиометрического состава с рекордно низкими коэрцитивными полями проведено детальное исследование кинетики доменной структуры с использованием прямой визуализации доменов. В LT стехиометрического состава впервые выявлено качественное изменение кинетики доменной структуры при переходе от слабых полей к сильным.
4) Для описания измеренной полевой зависимости времени переключения в стехиометрическом LT в слабых полях предложена модель движения доменной стенки с учетом взаимодействия с центрами пиннинга и запаздывания объемного экранирования.
5) Предложен и экспериментально подтвержден новый механизм эффекта усталости в сегнетоэлектриках при циклическом переключении, обусловленный образованием «замороженных доменов» (областей, содержащих заряженные доменные стенки).
6) Предложен оригинальный подход к описанию процесса усталости с использованием формулы Колмогорова-Аврами, модифицированной для переключения поляризации в ограниченном объеме.
1) Предложены и апробированы оригинальные методы определения основных параметров процесса объемного экранирования в ЬК и ЬТ на основе анализа токов переключения, релаксации контраста «следа» доменной стенки и интенсивности когерентного света, дифрагировавшего на доменных стенках.
2) Показано, что в монокристаллах семейства LN и LT легирование Mg и Er, а также переход от конгруэнтного состава к стехиометрическому приводят к значительному уменьшению полей объемного экранирования и увеличению характерных времен релаксации. Наблюдаемый эффект объяснен уменьшением концентрации дипольных дефектов.
3) Впервые в монокристаллах LN и LT стехиометрического состава с рекордно низкими коэрцитивными полями проведено детальное исследование кинетики доменной структуры с использованием прямой визуализации доменов. В LT стехиометрического состава впервые выявлено качественное изменение кинетики доменной структуры при переходе от слабых полей к сильным.
4) Для описания измеренной полевой зависимости времени переключения в стехиометрическом LT в слабых полях предложена модель движения доменной стенки с учетом взаимодействия с центрами пиннинга и запаздывания объемного экранирования.
5) Предложен и экспериментально подтвержден новый механизм эффекта усталости в сегнетоэлектриках при циклическом переключении, обусловленный образованием «замороженных доменов» (областей, содержащих заряженные доменные стенки).
6) Предложен оригинальный подход к описанию процесса усталости с использованием формулы Колмогорова-Аврами, модифицированной для переключения поляризации в ограниченном объеме.



