МОДЕЛИ, МЕТОДЫ И ПРОГРАММЫ ДЛЯ РАЗВИТИЯ МЕДИЦИНСКОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ПРОГНОЗА РЕТИНОПАТИИ
|
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
Публикации
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
Публикации
Актуальность темы
Существующие медицинские информационные системы прогноза ретинопатии недоношенных новорожденных (МИС ПРН) - одного из тяжелых заболеваний, приводящих ребенка к быстро наступающей слепоте, обеспечивают лишь «грубый» неоперативный прогноз. А для эффективного лечения необходим своевременный прогноз с «тонким» разделением степеней тяжести. Это требует развития прототипа МИС ПРН в части моделей, методов и программного обеспечения.
Теоретическим основам математического моделирования в медицине и применению моделирования для решения актуальных практических задач, в т.ч. в области НИОКР медицинских интеллектуально-информационных систем, посвящены работы как зарубежных ученых (Р. Беллман, Christine L. Tsien, N. Lavrae и др.), так и отечественных (С.А. Айвазян, А.А. Генкин, Е. В. Гублер, В. Дюк, М. Ю. Охтилев, Б. В. Соколов, Л. Б. Штейн, В. Эмануэль, Р. М. Юсупов и др.). Значительный вклад в развитие данной тематики внесён уральской школой (А.Н. Вараксин, С. Л. Гольдштейн, В. С. Казанцев, Н.Н. Красовский, Вл.Д. Мазуров, В.Д. Мазуров и др.).
Результаты применения математического моделирования в медико-биологических исследованиях и их информационно-программная поддержка свидетельствуют о существенном вкладе технических дисциплин в эффективность работы врачей, и особенно-исследователей с объектами высокой сложности.
Диссертация выполнена в рамках социального заказа от медицинских учреждений научно-практического типа на выполнение работ по моделированию и реализации систем информационно-программной поддержки медицинской деятельности в соответствии с программами министерства здравоохранения Свердловской области (тема №1150-пп «Развитие здравоохранения Свердловской области на 2007 - 2015 гг.» от 29.12.2006 г.), кафедры вычислительной техники УрФУ (тема № 3775 «Системная, информационная и компьютерная поддержка нечетких технологий»), грантами правительства Свердловской области (государственный контракт № 7-8/07 от 07.05 2007 г. «Разработка модели медико-социальной профилактики тяжелых нарушений зрительного анализатора у недоношенных детей»), ГБУЗ СО ДКБВЛ Научно-практического центра «Бонум» (договор № 694 от 13.12.2007 «Разработка пакета средств информационно-методической поддержки прогнозирования риска развития ретинопатии у недоношенных детей»).
Объект исследования - модели, методы и программы для развития МИС ПРН.
Предмет исследования - развитие моделей, методов и программ МИС ПРН.
Глобальная цель работы - развитая медицинская информационная система оперативного прогноза тяжелых степеней ретинопатии с выделением про-межуточных.
Локальные цели:
- получение нового знания в виде пакета моделей,
- применение пакета моделей для компьютерного решения в виде комплекса программ и его практического использования.
Основные задачи работы
1. Анализ состояния проблематики развития МИС ПРН (литературно-аналитический обзор с выходом на пакет прототипов медицинской информационной системы прогноза и ее подсистем) и определение модернизируемых и дополнительно вводимых ее подсистем и блоков.
2. Создание пакета полуформализованных (концептуальных, системных, структурных, алгоритмических) и математических моделей, необходимых для проектирования нового качества МИР ПРН и последующего программирования.
3. Развитие алгоритмов и методов дискриминантного анализа для «тонкого» разделения факторов с последующей идентификацией тяжелых (между 4 и 5) степеней патологии.
4. Разработка программного обеспечения для развитой МИС ПРН.
5. Инженерная реализация развитой МИС ПРН, ее испытание и внедрение.
Научная новизна
1. Дан анализ факторов, показавший, что
- исходный список факторов, используемых медицинскими специалистами для оценки риска возникновения РН, из порядка 100 наименований, может быть редуцирован методами статистики на порядок до списка информативных; при этом выявленные факторы разделены с помощью дискриминтатного анализа на 3 ранга: 4 сильно влияющих и по 3 средне- и слабо влияющих фактора;
- нецелесообразно использование лишь одного из факторов «масса» или «возраст», более информативна совместная массо-возрастная характеристика; применением математической комбинации кластерного анализа и двойной нормировки на плоскости состояний объекта впервые выделены три новых массо-возрастных группы;
- для дитохомического (да/нет) прогнозирования наличия или отсутствия РН достаточно учитывать сильно влияющие факторы; для легкой, средней и тяжелой - средне влияющие факторы, а для «тонкого» прогнозирования (между 1 и 2, а также между 4 и 5 степенями) - мало влияющие факторы.
2. Развиты алгоритмы:
- разрешения «пограничных» ситуаций (нахождение объекта в пересечении облаков классов) и получения однозначного ответа, отличающиеся математическими приемами использования операционных характеристик - чувствительности и специфичности, а именно - вычислением рейтинга и антирейтинга решающих правил;
- применения адаптированного дискриминантного анализа, отличающегося использованием условных (массо-возрастных) классификаций, малоинформативных признаков и разрешенных «пограничных» ситуаций, что позволило перейти от выделения 3-х степеней тяжести к их более «тонкому» разделению на 5 основных, методом идентификации с помощью предложенных продукционных правил;
- математического описания динамики готовности прогноза для прототипных и предлагаемого решений, отличающейся вводом в сигмоидное уравнение настраиваемых параметров времени реагирования и точности оценок.
3. Развиты структура и алгоритмы функционирования МИС ПРН, для чего:
- создан (методом критериальных взвешенных оценок аналогов с последующей процедурой отбора) трехранговый пакет научных и корпоративных прототипов, позволивший выявить недостатки системы, ее подсистем и блоков и сгенерировать гипотезы о парирующих эти недостатки новых технических решениях;
- предложен пакет полуформализованных моделей (концептуальных, системных, структурных, алгоритмических) основных объектов исследования, отличающийся строгим синтаксисом и интерпретируемой семантикой, связанной с настройкой на особенности пациента, патологии и деятельности медицинских специалистов;
- получен (из вербальных описаний опыта врачей методами контент- анализа) пакет иерархических кортежных моделей формализованного отражения логики решения основной задачи через вспомогательные и частные.
4. Новые технические решения по теме диссертации защищены:
- патентами на изобретения № 2007144799/14(049084) от 03.12.2007 и № 2011108890/14(012810) от 09.03.2011;
- свидетельствами об официальной регистрации программ для ЭВМ «Система поддержки прогнозирования степени риска развития ретинопатии недоношенных «СншРШ: № 2008610460 от 24.01.2008 и № 2009615071 от 16.09.2009.
Практическая значимость работы
Развитая МИС ПРН может применяться в медицинских учреждениях со-ответствующего профиля. Она прошла испытания и передана в ОДКБ №1 и в НПЦ «Бонум» г. Екатеринбург (имеются акты внедрения).
Модели, методы и программы используются в учебном процессе по на-правлению «Информационные системы и технологии в медицине» на кафедре вычислительной техники ФГАОУ ВПО УрФУ, а также - на кафедре педиатрии ФПК и ПП ГОУ ВПО УрГМА Росздрава, г. Екатеринбург (имеются акты внедрения).
Методы исследования
В ходе решения задач исследования использовали методы системотехники и системологии, математического моделирования, многомерного анализа данных, теории распознавания образов, статистического анализа, экспертных оценок, опроса и обработки экспертных данных, вычислительного эксперимента, объектно-ориентированного программирования.
Положения, выносимые на защиту:
1. Созданный пакет научных и корпоративных прототипов МИС РН, обладающих структурно - функциональной и параметрической неполнотой, может быть надежной основой для сравнения с требованиями к задаче и необходимого развития ее структуры и алгоритмов функционирования в части модификации четырех прототипных подсистем (выявления специфики и объединения данных, прогноза профильными специалистами, оценки прогноза, прогноза профильными специалистами при поддержке медицинской инженерии) и введения новой - прогноза «тонких» степеней, а также их блоков.
2. Кортежно-иерархически представленная логика решения нечеткой по исходной постановке задачи развития МИС ПРН, а также полуформализованные (концептуальные, системные, структурные, алгоритмические и пр.) и математические модели для интеграции разнородных данных, редукции списка факторов, оперативного (к 14 дням после рождения) прогнозирования «тонких» степеней тяжести заболевания обеспечивают подтверждение прогноза в 93% случаев против (35-88 %) «да/нет» и «легкого/среднего/тяжелого» неоперативного (к 70-80 дню) прогнозирования в прототипах, а также оценку динамики готовности прогнозов.
3. Численные методы дискриминантного анализа, адаптированные и развитые под специфику задач за счет сочетания условных (массо-возрастных) классификаций, учета малоинформативных признаков и разрешения «пограничных» ситуаций в составе способов прогноза, защищенных патентами на изобретения, могут быть основой для корректной обработки данных при компьютерной реализации.
4. Разработанное программное обеспечение МИС ПРН, на которые получены свидетельства о регистрации, может быть успешно внедрено в медицинскую практику и учебный процесс.
Личный вклад автора. Разработка программного обеспечения по сбору и структуризации данных; алгоритма интеграции разрозненной информации и соответствующего программного обеспечения; формализованной карты учета, статистическая обработки данных по выявлению информационно ценных признаков, разработаны математические модели для прогноза степени риска развития РН до 14 дней жизни, с возможностью выделения «тонких» (между 4 и 5) тяжелых степеней в составе МИС ПРН, а также организация и участие в испытаниях и внедрении.
Реализация и апробация работы. Результаты диссертационного исследования докладывались и обсуждались на Международной научной конференции «Информационно - математические технологии в экономике, технике и образовании» (Екатеринбург, 2007, 2008, 2009), 1-ом международном научно-практическом симпозиуме «Современные наукоемкие технологии: теория, эксперимент и практические результаты» (Хургада, Египет, 2007), ХУ-й Международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург, 2007), II общероссийской научной конференции с международным участием «Инновационные медицинские технологии» (Москва, 2010), 11-ой Межрегиональной конференции «Актуальные вопросы детской офтальмологии и ретинопатии не-доношенных» (Екатеринбург, 2007), VI съезде РАСПМ и 111-ем Конгрессе специалистов перинатальной медицины (Москва, 2008), заседаниях ученого совета НПЦ «Бонум» (2007, 2008, 2010), научных семинарах кафедры вычислительной техники УрФУ (2010-2012г.г.).
Публикации. Основное содержание диссертации представлено в 26 публикациях, из них 4 - в журналах из списка ВАК, 7 единиц интеллектуальной собственности.
Объем и структура работы. Диссертация состоит из введения, 5 глав, заключения, списка литературы из наименований, и содержит стр. основного машинописного текста, рисунков и таблиц.
Существующие медицинские информационные системы прогноза ретинопатии недоношенных новорожденных (МИС ПРН) - одного из тяжелых заболеваний, приводящих ребенка к быстро наступающей слепоте, обеспечивают лишь «грубый» неоперативный прогноз. А для эффективного лечения необходим своевременный прогноз с «тонким» разделением степеней тяжести. Это требует развития прототипа МИС ПРН в части моделей, методов и программного обеспечения.
Теоретическим основам математического моделирования в медицине и применению моделирования для решения актуальных практических задач, в т.ч. в области НИОКР медицинских интеллектуально-информационных систем, посвящены работы как зарубежных ученых (Р. Беллман, Christine L. Tsien, N. Lavrae и др.), так и отечественных (С.А. Айвазян, А.А. Генкин, Е. В. Гублер, В. Дюк, М. Ю. Охтилев, Б. В. Соколов, Л. Б. Штейн, В. Эмануэль, Р. М. Юсупов и др.). Значительный вклад в развитие данной тематики внесён уральской школой (А.Н. Вараксин, С. Л. Гольдштейн, В. С. Казанцев, Н.Н. Красовский, Вл.Д. Мазуров, В.Д. Мазуров и др.).
Результаты применения математического моделирования в медико-биологических исследованиях и их информационно-программная поддержка свидетельствуют о существенном вкладе технических дисциплин в эффективность работы врачей, и особенно-исследователей с объектами высокой сложности.
Диссертация выполнена в рамках социального заказа от медицинских учреждений научно-практического типа на выполнение работ по моделированию и реализации систем информационно-программной поддержки медицинской деятельности в соответствии с программами министерства здравоохранения Свердловской области (тема №1150-пп «Развитие здравоохранения Свердловской области на 2007 - 2015 гг.» от 29.12.2006 г.), кафедры вычислительной техники УрФУ (тема № 3775 «Системная, информационная и компьютерная поддержка нечетких технологий»), грантами правительства Свердловской области (государственный контракт № 7-8/07 от 07.05 2007 г. «Разработка модели медико-социальной профилактики тяжелых нарушений зрительного анализатора у недоношенных детей»), ГБУЗ СО ДКБВЛ Научно-практического центра «Бонум» (договор № 694 от 13.12.2007 «Разработка пакета средств информационно-методической поддержки прогнозирования риска развития ретинопатии у недоношенных детей»).
Объект исследования - модели, методы и программы для развития МИС ПРН.
Предмет исследования - развитие моделей, методов и программ МИС ПРН.
Глобальная цель работы - развитая медицинская информационная система оперативного прогноза тяжелых степеней ретинопатии с выделением про-межуточных.
Локальные цели:
- получение нового знания в виде пакета моделей,
- применение пакета моделей для компьютерного решения в виде комплекса программ и его практического использования.
Основные задачи работы
1. Анализ состояния проблематики развития МИС ПРН (литературно-аналитический обзор с выходом на пакет прототипов медицинской информационной системы прогноза и ее подсистем) и определение модернизируемых и дополнительно вводимых ее подсистем и блоков.
2. Создание пакета полуформализованных (концептуальных, системных, структурных, алгоритмических) и математических моделей, необходимых для проектирования нового качества МИР ПРН и последующего программирования.
3. Развитие алгоритмов и методов дискриминантного анализа для «тонкого» разделения факторов с последующей идентификацией тяжелых (между 4 и 5) степеней патологии.
4. Разработка программного обеспечения для развитой МИС ПРН.
5. Инженерная реализация развитой МИС ПРН, ее испытание и внедрение.
Научная новизна
1. Дан анализ факторов, показавший, что
- исходный список факторов, используемых медицинскими специалистами для оценки риска возникновения РН, из порядка 100 наименований, может быть редуцирован методами статистики на порядок до списка информативных; при этом выявленные факторы разделены с помощью дискриминтатного анализа на 3 ранга: 4 сильно влияющих и по 3 средне- и слабо влияющих фактора;
- нецелесообразно использование лишь одного из факторов «масса» или «возраст», более информативна совместная массо-возрастная характеристика; применением математической комбинации кластерного анализа и двойной нормировки на плоскости состояний объекта впервые выделены три новых массо-возрастных группы;
- для дитохомического (да/нет) прогнозирования наличия или отсутствия РН достаточно учитывать сильно влияющие факторы; для легкой, средней и тяжелой - средне влияющие факторы, а для «тонкого» прогнозирования (между 1 и 2, а также между 4 и 5 степенями) - мало влияющие факторы.
2. Развиты алгоритмы:
- разрешения «пограничных» ситуаций (нахождение объекта в пересечении облаков классов) и получения однозначного ответа, отличающиеся математическими приемами использования операционных характеристик - чувствительности и специфичности, а именно - вычислением рейтинга и антирейтинга решающих правил;
- применения адаптированного дискриминантного анализа, отличающегося использованием условных (массо-возрастных) классификаций, малоинформативных признаков и разрешенных «пограничных» ситуаций, что позволило перейти от выделения 3-х степеней тяжести к их более «тонкому» разделению на 5 основных, методом идентификации с помощью предложенных продукционных правил;
- математического описания динамики готовности прогноза для прототипных и предлагаемого решений, отличающейся вводом в сигмоидное уравнение настраиваемых параметров времени реагирования и точности оценок.
3. Развиты структура и алгоритмы функционирования МИС ПРН, для чего:
- создан (методом критериальных взвешенных оценок аналогов с последующей процедурой отбора) трехранговый пакет научных и корпоративных прототипов, позволивший выявить недостатки системы, ее подсистем и блоков и сгенерировать гипотезы о парирующих эти недостатки новых технических решениях;
- предложен пакет полуформализованных моделей (концептуальных, системных, структурных, алгоритмических) основных объектов исследования, отличающийся строгим синтаксисом и интерпретируемой семантикой, связанной с настройкой на особенности пациента, патологии и деятельности медицинских специалистов;
- получен (из вербальных описаний опыта врачей методами контент- анализа) пакет иерархических кортежных моделей формализованного отражения логики решения основной задачи через вспомогательные и частные.
4. Новые технические решения по теме диссертации защищены:
- патентами на изобретения № 2007144799/14(049084) от 03.12.2007 и № 2011108890/14(012810) от 09.03.2011;
- свидетельствами об официальной регистрации программ для ЭВМ «Система поддержки прогнозирования степени риска развития ретинопатии недоношенных «СншРШ: № 2008610460 от 24.01.2008 и № 2009615071 от 16.09.2009.
Практическая значимость работы
Развитая МИС ПРН может применяться в медицинских учреждениях со-ответствующего профиля. Она прошла испытания и передана в ОДКБ №1 и в НПЦ «Бонум» г. Екатеринбург (имеются акты внедрения).
Модели, методы и программы используются в учебном процессе по на-правлению «Информационные системы и технологии в медицине» на кафедре вычислительной техники ФГАОУ ВПО УрФУ, а также - на кафедре педиатрии ФПК и ПП ГОУ ВПО УрГМА Росздрава, г. Екатеринбург (имеются акты внедрения).
Методы исследования
В ходе решения задач исследования использовали методы системотехники и системологии, математического моделирования, многомерного анализа данных, теории распознавания образов, статистического анализа, экспертных оценок, опроса и обработки экспертных данных, вычислительного эксперимента, объектно-ориентированного программирования.
Положения, выносимые на защиту:
1. Созданный пакет научных и корпоративных прототипов МИС РН, обладающих структурно - функциональной и параметрической неполнотой, может быть надежной основой для сравнения с требованиями к задаче и необходимого развития ее структуры и алгоритмов функционирования в части модификации четырех прототипных подсистем (выявления специфики и объединения данных, прогноза профильными специалистами, оценки прогноза, прогноза профильными специалистами при поддержке медицинской инженерии) и введения новой - прогноза «тонких» степеней, а также их блоков.
2. Кортежно-иерархически представленная логика решения нечеткой по исходной постановке задачи развития МИС ПРН, а также полуформализованные (концептуальные, системные, структурные, алгоритмические и пр.) и математические модели для интеграции разнородных данных, редукции списка факторов, оперативного (к 14 дням после рождения) прогнозирования «тонких» степеней тяжести заболевания обеспечивают подтверждение прогноза в 93% случаев против (35-88 %) «да/нет» и «легкого/среднего/тяжелого» неоперативного (к 70-80 дню) прогнозирования в прототипах, а также оценку динамики готовности прогнозов.
3. Численные методы дискриминантного анализа, адаптированные и развитые под специфику задач за счет сочетания условных (массо-возрастных) классификаций, учета малоинформативных признаков и разрешения «пограничных» ситуаций в составе способов прогноза, защищенных патентами на изобретения, могут быть основой для корректной обработки данных при компьютерной реализации.
4. Разработанное программное обеспечение МИС ПРН, на которые получены свидетельства о регистрации, может быть успешно внедрено в медицинскую практику и учебный процесс.
Личный вклад автора. Разработка программного обеспечения по сбору и структуризации данных; алгоритма интеграции разрозненной информации и соответствующего программного обеспечения; формализованной карты учета, статистическая обработки данных по выявлению информационно ценных признаков, разработаны математические модели для прогноза степени риска развития РН до 14 дней жизни, с возможностью выделения «тонких» (между 4 и 5) тяжелых степеней в составе МИС ПРН, а также организация и участие в испытаниях и внедрении.
Реализация и апробация работы. Результаты диссертационного исследования докладывались и обсуждались на Международной научной конференции «Информационно - математические технологии в экономике, технике и образовании» (Екатеринбург, 2007, 2008, 2009), 1-ом международном научно-практическом симпозиуме «Современные наукоемкие технологии: теория, эксперимент и практические результаты» (Хургада, Египет, 2007), ХУ-й Международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург, 2007), II общероссийской научной конференции с международным участием «Инновационные медицинские технологии» (Москва, 2010), 11-ой Межрегиональной конференции «Актуальные вопросы детской офтальмологии и ретинопатии не-доношенных» (Екатеринбург, 2007), VI съезде РАСПМ и 111-ем Конгрессе специалистов перинатальной медицины (Москва, 2008), заседаниях ученого совета НПЦ «Бонум» (2007, 2008, 2010), научных семинарах кафедры вычислительной техники УрФУ (2010-2012г.г.).
Публикации. Основное содержание диссертации представлено в 26 публикациях, из них 4 - в журналах из списка ВАК, 7 единиц интеллектуальной собственности.
Объем и структура работы. Диссертация состоит из введения, 5 глав, заключения, списка литературы из наименований, и содержит стр. основного машинописного текста, рисунков и таблиц.
Сформирован пакет прототипов МИС ПРН и ее составляющих, на базе которых выполнено развитие системы. Разработаны и реализованы алгоритмы сбора, объединения и унификации информации, первично регистрируемой в разрозненных источниках данных. Получены: набор информативных и значимых переменных для оценки риска развития РН; массо-возрастные классификации, используемые в качестве независимой переменной в основном правиле прогноза; набор линейных дискриминантных функций и вариант применения дискриминантного анализа для выявления степени риска развития РН, превосходящий по качеству прототип и реализованный в виде программного средства. Предложена модель динамики готовности прогноза. Есть патенты на изобретения, а также свидетельства об официальной регистрации программ для ЭВМ.
Сделан вывод о том, что предложенные модели, методы и разработанные средства информационно-компьютерной поддержки деятельности врачей- неонатологов обеспечили развитие МИС ПРН и достаточны для достоверного прогнозирования основных и промежуточных степеней патологии.
Сделан вывод о том, что предложенные модели, методы и разработанные средства информационно-компьютерной поддержки деятельности врачей- неонатологов обеспечили развитие МИС ПРН и достаточны для достоверного прогнозирования основных и промежуточных степеней патологии.



